首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Resistance mechanisms of wild tomato germplasm to infection of Oidium neolycopersici
Authors:Aleš Lebeda  Barbora Mieslerová  Marek Petřivalský  Lenka Luhová  Martina Špundová  Michaela Sedlářová  Vladimíra Nožková-Hlaváčková  David A C Pink
Institution:1. Department of Botany, Faculty of Science, Palacky University in Olomouc, ?lechtitel? 11, 783 71, Olomouc-Holice, Czech Republic
2. Department of Biochemistry, Faculty of Science, Palacky University in Olomouc, ?lechtitel? 11, 783 71, Olomouc-Holice, Czech Republic
3. Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacky University in Olomouc, ?lechtitel? 11, 783 71, Olomouc-Holice, Czech Republic
4. Harper Adams University, Newport, Shropshire, TF10 8NB, UK
Abstract:Tomato powdery mildew (Oidium neolycopersici) is one of the most devastating diseases of cultivated tomatoes worldwide. Although the first epidemics were recorded more than 25 years ago many aspects of this host-pathogen interaction are still not well understood. Detailed morphological and molecular studies of the anamorphs confirmed that O. neolycopersici is phylogeneticaly close to Erysiphe aquilegiae var. ranunculi. Host range is rather broad, apart from Solanaceae hosts were found in the families Apocynaceae, Campanulaceae, Crassulaceae, Cistaceae, Cucurbitaceae, Linaceae, Malvaceae, Papaveraceae, Pedialiaceae, Scrophulariaceae, Valerianaceae a Violaceae. Non-host resistance within these families is not based on inhibition of formation of primary haustorium, however, on post-haustorial hypersensitive reponse and another type of non-hypersensitive resistance. Screening of wild Solanum species (previous Lycopersicon spp.) germplasm revealed valuable sources of resistance (S. habrochaites, S. pennellii, S. cheesmaniae, S. chilense, S. peruvianum). The main resistance mechanism was found to be a hypersensitive response (HR), in some cases followed by limited development of the pathogen. However, there is a broad variation in resistance response on the histological and cytological level. Interaction between many wild Solanum spp. and O. neolycopersici is race-specific, at least three races were differentiated. In some interspecific crosses (S. lycopersicum × S. habrochaites) adult plant resistance was observed. Biochemical studies focusing on production of reactive oxygen species (ROS) and peroxidase activity during infection of O. neolycopersici showed that production of ROS and activity of corresponding enzymes is related to activation of defence responses in genotypes of wild Solanum sect. Lycopersicon. The significance of nitric oxide (NO) in O. neolycopersici pathogenesis was supported by experiments with NO donors and scavengers. In moderately resistant genotype S. chmielewskii, treatment by heat stress caused slight deceleration of pathogen development, increased production of jasmonic acid (JA) and abscisic acid (ABA) and increased peroxidase activity in infected plants. The different degree of tomato resistance/susceptibility did not markedly change the rate and extent of photosynthetic response to O. neolycopersici; only minimal impairment of photosynthesis was found in both susceptible and moderately resistant genotypes during the first 9 days after inoculation. The accumulated evidence confirm a crucial role of localised increased production of ROS and reactive nitrogen species (RNS) in response to pathogen penetration into plant tissue and its involvement in the plant resistance responses including the initiation and progression of plant cell death in host wild Solanum species. Crucial points of further research are discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号