首页 | 本学科首页   官方微博 | 高级检索  
     

基于SD-SWT的铜胁迫下玉米光谱奇异性甄别与污染监测
作者姓名:李艳茹  杨可明  韩倩倩  高伟  张建红
作者单位:中国矿业大学(北京)地球科学与测绘工程学院,北京 100083;中国矿业大学(北京)地球科学与测绘工程学院,北京 100083;中国矿业大学(北京)地球科学与测绘工程学院,北京 100083;中国矿业大学(北京)地球科学与测绘工程学院,北京 100083;中国矿业大学(北京)地球科学与测绘工程学院,北京 100083
基金项目:国家自然科学基金项目(41971401);中央高校基本科研业务费专项资金项目(2009QD02)
摘    要:为甄别重金属铜(Cu)胁迫下玉米光谱的弱差及奇异信息以监测玉米受Cu污染的程度,于2017年设置多浓度Cu胁迫下玉米培株盆栽实验,测定玉米叶片反射光谱和Cu含量数据,将一阶光谱微分(SD)和离散平稳小波变换(SWT)相结合,定义并提取小波奇异指数(WSI),进行光谱的奇异性甄别,并与常规的光谱特征参数进行对比;结合逐步多元线性回归(SMLR)算法,构建玉米叶片Cu含量的WSI-SMLR反演模型,同时利用不同年份采集的玉米叶片反射光谱和Cu含量数据验证反演模型的可行性及稳定性,并与一些已有的类似研究成果进行对比。结果表明:相比于常规的光谱特征参数,WSI与玉米叶片中的Cu含量有更显著的相关性及线性关系,可用来监测玉米叶片中的Cu含量变化;与一些已有的类似研究成果相比,WSI-SMLR模型反演玉米叶片中Cu含量的精度更高且更稳定。研究验证了小波奇异指数在监测玉米Cu污染方面具有有效性和优越性,为监测农作物重金属污染提供了新的光谱奇异指数与技术方法。

关 键 词:玉米  铜污染  光谱奇异分析  离散平稳小波变换  小波奇异指数  逐步多元线性回归
收稿时间:2020-04-24
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业环境科学学报》浏览原始摘要信息
点击此处可从《农业环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号