首页 | 本学科首页   官方微博 | 高级检索  
     

基于环境减灾卫星高光谱数据的盐碱地等级划分
引用本文:杨佳佳,姜琦刚,赵 静,吴阳春. 基于环境减灾卫星高光谱数据的盐碱地等级划分[J]. 农业工程学报, 2011, 27(10): 118-124. DOI: 10.3969/j.issn.1002-6819.2011.10.021
作者姓名:杨佳佳  姜琦刚  赵 静  吴阳春
作者单位:1. 吉林大学地球探测科学与技术学院,长春,130026
2. 中国科学院遥感应用研究所,北京,100101
基金项目:中国地质调查局资助项目(1212010510613);国家自然科学基金资助项目(40872193)
摘    要:为了进行盐碱地的有效防治,以松辽盆地为例,基于环境减灾卫星(HJ-1A)高光谱数据,对比曲线回归、最小二乘支持向量机回归二种非线性回归模型在含盐率反演中的预测效果,探索该区土壤盐碱化指标定量反演的最佳模型,最终采用最小二乘支持向量机(LS-SVM)回归预测的方法,在盐碱化较严重的大庆地区进行了多种盐碱地指标反演,并采用...

关 键 词:遥感  回归分析  盐碱地  最小二乘支持向量机  松辽盆地  大庆
收稿时间:2011-05-27
修稿时间:2011-09-11

Quantitative retrieval and classification of saline soil using HJ-1A hyperspectral data
Yang Jiaji,Jiang Qigang,Zhao Jing and Wu Yangchun. Quantitative retrieval and classification of saline soil using HJ-1A hyperspectral data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(10): 118-124. DOI: 10.3969/j.issn.1002-6819.2011.10.021
Authors:Yang Jiaji  Jiang Qigang  Zhao Jing  Wu Yangchun
Abstract:In order to effectively control the saline soil, taking Songliao Basin for example, the Environmental Mitigation Satellite (HJ-1A) hyperspectral data was used in this study. The most suitable quantitatively retrieve model of saline soil was selected by comparing the forecast results of the salt-bearing rate content retrieved by curvilinear regression and least squares support vector machine (LS-SVM) regression. Ultimately, LS-SVM regression was chosen to retrieve various saline soil indexes in Daqing where the soil was salinized seriously. The retrieve results were classified into several grades by binary decision tree. The results showed that, it was convenient and effective to acquire the saline soil information by using HJ-1A. The accuracy of retrieve model based on LS-SVM was high. The saline soil grade classification, which was calculated by binary decision tree using the RS technology, was accurate and reliable. Soil salinization of Daqing was serious, most of that was alkali soil. The area of light, medium and server alkali soil was separately 345.03, 1?389.03, 869.94?km2 , respectively. The research has great significance for saline soil rapid extracting and prevention in Songliao Basin.
Keywords:remote sensing   regression analysis   saline soils   LS-SVM   Songliao Plain   Daqing
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号