首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进颜色特征的小麦病害图像识别技术研究
引用本文:刘连忠,张武,朱诚. 基于改进颜色特征的小麦病害图像识别技术研究[J]. 安徽农业科学, 2012, 40(26): 12877-12879
作者姓名:刘连忠  张武  朱诚
作者单位:安徽农业大学信息与计算机学院,安徽合肥,230036;安徽农业大学信息与计算机学院,安徽合肥,230036;安徽农业大学信息与计算机学院,安徽合肥,230036
基金项目:安徽农业大学校长基金重点项目(2010ZD11)
摘    要:[目的]介绍一种根据小麦病害图像的颜色特征进行病害识别的方法。[方法]首先对小麦叶部图像进行预处理,利用小波变换进行病害部位增强和去噪;然后基于病害部位的非绿特征进行图像分割,得到只包含病害像素的图像;对病害图像颜色进行统计,得到R、G、B分量的均值,并用相对于绿色分量的均值比作为颜色特征值;最后通过分析样本图像得到每种病害的特征值范围,利用颜色特征值对未知样本进行病害识别。[结果]采用该方法对小麦叶锈病、条锈病、白粉病进行识别,平均准确率达到98%。[结论]为小麦病害的诊断与诊治提供了理论依据。

关 键 词:小麦病害  机器视觉  图像识别  颜色特征

Image Recognition of Wheat Diseases Based on Improved Color Feature
Affiliation:LIU Lian-zhong et al(School of Information and Computer Science,Anhui Agricultural University,Hefei,Anhui 230036)
Abstract:[Objective] The aim was to introduce an image recognition method of wheat diseases based on color feature.[Method] First,image preprocessing using wavelet transform was made for image enhancement and de-noising;then image segmentation was made based on non-green feature of disease pixels,obtaining image with only disease pixels;mean values of R,G and B were computed to get color mean ratios as color features;finally feature ranges were obtained by analyzing sample images,and unknown disease recognition was performed using color features.[Result] The recognition accuracy of wheat diseases leaf rust,stripe rust and powdery mildew by the method reached 98%.[Conclusion] The research provides theoretical basis for the diagnosis and treatment of wheat diseases.
Keywords:Wheat disease  Machine vision  Image recognition  Color feature
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号