首页 | 本学科首页   官方微博 | 高级检索  
     

基于C-SVM的大米品种识别研究
引用本文:梁诗华,何金成,林毅鑫. 基于C-SVM的大米品种识别研究[J]. 安徽农业科学, 2016, 44(23): 201-203. DOI: 10.3969/j.issn.0517-6611.2016.23.065
作者姓名:梁诗华  何金成  林毅鑫
作者单位:福建农林大学机电工程学院现代农业装备研究所,福建福州,350002;福建农林大学机电工程学院现代农业装备研究所,福建福州,350002;福建农林大学机电工程学院现代农业装备研究所,福建福州,350002
基金项目:福建省自然科学基金项目(2010J01272);福建省福建农林大学现代农业装备及自动化创新平台项目(612014017)。
摘    要:提出了一种基于支持向量机(C-SVM)区分大米品种的方法。首先对大米图像进行阈值分割、平滑处理等预处理,并根据大米的粒型特点,提取米粒的面积、周长等6个形态特征。利用Orange Canvas数据挖掘软件先对linear和RBF核函数进行核参数选择,并在Opencv 3.0环境下,编程实现K-means、linear和RBF的3种大米品种识别方法,对10组混合大米图像进行品种测试。试验结果表明,支持向量机线性核函数对大米品种识别具有较高的预测稳定性,识别分类准确率约为99%。

关 键 词:品种  特征提取  K-means  linear  RBF

The Identification Research of Rice Varieties Based on C-SVM
LIANG Shi-hua,HE Jin-cheng,LIN Yi-xin. The Identification Research of Rice Varieties Based on C-SVM[J]. Journal of Anhui Agricultural Sciences, 2016, 44(23): 201-203. DOI: 10.3969/j.issn.0517-6611.2016.23.065
Authors:LIANG Shi-hua  HE Jin-cheng  LIN Yi-xin
Abstract:This paper proposed a method based on support vector machine(C-SVM) to distinguish rice varieties.At first, it did the image threshold segmentation, then proceeded the smooth processing.And according to the characteristics of rice grain shape, extracted area, perim-eter and so on, using Orange Canvas data mining software to select kernel parameters of linear and RBF kernel function, and accomplish rice varieties recognition by programing using K means, linear function in SVM and RBF methods under Opencv 3.0.Ten groups of mixed rice were conducted the recognition test, the results showed that linear function in SVM could identify rice varieties in a superior prediction stability with classification accuracy at about 99%.
Keywords:Varieties  Feature extraction  K-means  Linear  RBF
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号