首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Antioxidant activity of citrus limonoids, flavonoids, and coumarins
Authors:Yu Jun  Wang Limin  Walzem Rosemary L  Miller Edward G  Pike Leonard M  Patil Bhimanagouda S
Institution:Texas A&M University-Kingsville Citrus Center, 312 North International Boulevard, Weslaco, Texas 78596, USA.
Abstract:A variety of in vitro models such as beta-carotene-linoleic acid, 1,1-diphenyl-2-picryl hydrazyl (DPPH), superoxide, and hamster low-density lipoprotein (LDL) were used to measure the antioxidant activity of 11 citrus bioactive compounds. The compounds tested included two limonoids, limonin (Lim) and limonin 17-beta-D-glucopyranoside (LG); eight flavonoids, apigenin (Api), scutellarein (Scu), kaempferol (Kae), rutin trihydrate (Rut), neohesperidin (Neh), neoeriocitrin (Nee), naringenin (Ngn), and naringin(Ng); and a coumarin (bergapten). The above compounds were tested at concentration of 10 microM in all four methods. It was found that Lim, LG, and Ber inhibited <7%, whereas Scu, Kae, and Rut inhibited 51.3%, 47.0%, and 44.4%, respectively, using the beta-carotene-linoleate model system. Lim, LG, Rut, Scu, Nee, and Kae showed 0.5% 0.25%, 32.2%, 18.3%, 17.2%, and 12.2%, respectively, free radical scavenging activity using the DPPH method. In the superoxide model, Lim, LG, and Ber inhibited the production of superoxide radicals by 2.5-10%, while the flavonoids such as Rut, Scu, Nee, and Neh inhibited superoxide formation by 64.1%, 52.1%, 48.3%, and 37.7%, respectively. However, LG did not inhibit LDL oxidation in the hamster LDL model. But, Lim and Ber offered some protection against LDL oxidation, increasing lag time to 345 min (3-fold) and 160 min (33% increase), respectively, while both Rut and Nee increased lag time to 2800 min (23-fold). Scu and Kae increased lag time to 2140 min (18-fold) and 1879 min (15.7-fold), respectively. In general, it seems that flavonoids, which contain a chromanol ring system, had stronger antioxidant activity as compared to limonoids and bergapten, which lack the hydroxy groups. The present study confirmed that several structural features were linked to the strong antioxidant activity of flavonoids. This is the first report on the antioxidant activity of limonin, limonin glucoside, and neoeriocitrin.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号