首页 | 本学科首页   官方微博 | 高级检索  
     


Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays
Authors:Ying HUANG  Xiao-xia ZHANG  Yi-hong LI  Jian-zhou DING  Han-mei DU  Zhuo ZHAO  Li-na ZHOU  Chan LIU  Shi-bin GAO  Mo-ju CAO  Yan-li LU  Su-zhi ZHANG
Affiliation:Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture/Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
Abstract:Maize is one of the most important crops worldwide, but it suffers from salt stress when grown in saline-alkaline soil. There is therefore an urgent need to improve maize salt tolerance and crop yield. In this study, the SsNHX1 gene of Suaeda salsa, which encodes a vacuolar membrane Na+/H+ antiporter, was transformed into the maize inbred line 18-599 by Agrobacterium-mediated transformation. Transgenic maize plants overexpressing the SsNHX1 gene showed less growth retardation when treated with an increasing NaCl gradient of up to 1%, indicating enhanced salt tolerance. The improved salt tolerance of transgenic plants was also demonstrated by a significantly elevated seed germination rate (79%) and a reduction in seminal root length inhibition. Moreover, transgenic plants under salt stress exhibited less physiological damage. SsNHX1-overexpressing transgenic maize accumulated more Na+ and K+ than wild-type (WT) plants particularly in the leaves, resulting in a higher ratio of K+/Na+ in the leaves under salt stress. This result revealed that the improved salt tolerance of SsNHX1-overexpressing transgenic maize plants was likely attributed to SsNHX1-mediated localization of Na+ to vacuoles and subsequent maintenance of the cytosolic ionic balance. In addition, SsNHX1 overexpression also improved the drought tolerance of the transgenic maize plants, as rehydrated transgenic plants were restored to normal growth while WT plants did not grow normally after dehydration treatment. Therefore, based on our engineering approach, SsNHX1 represents a promising candidate gene for improving the salt and drought tolerance of maize and other crops.
Keywords:salt stress  drought stress  gene transformation
本文献已被 CNKI ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号