首页 | 本学科首页   官方微博 | 高级检索  
     检索      


GGE biplot analysis to evaluate genotype, environment and their interactions in sorghum multi-location data
Authors:Sujay Rakshit  K N Ganapathy  S S Gomashe  A Rathore  R B Ghorade  M V Nagesh Kumar  K Ganesmurthy  S K Jain  M Y Kamtar  J S Sachan  S S Ambekar  B R Ranwa  D G Kanawade  M Balusamy  D Kadam  A Sarkar  V A Tonapi  J V Patil
Institution:1. Directorate of Sorghum Research, Rajendranagar, Hyderabad, Andhra Pradesh, 500 030, India
2. International Crops Research Institute for the Semi-Arid Tropics, 502324, Andhra Pradesh, India
3. Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104, India
4. ANGRAU Regional Agricultural Research Station, Palem, Andhra Pradesh, 509 215, India
5. Department of Genetics and Plant Breeding, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
6. Sorghum Research Station, Sardarkrushinagar Dantiwada Agricultural University, Banaskantha, Deesa, Gujarat, 385 535, India
7. Main Sorghum Research Station, University of Agricultural Sciences, Dharwad, Karnataka, 580005, India
8. Crop Research Station (AICRP), CS Azad University of Agriculture and Technology, Mauranipur, Jhansi, Uttar Pradesh, 284 204, India
9. Marathwada Agricultural University, Parbhani, Maharashtra, 431 402, India
10. Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India
11. Agricultural Research Station (PDKV), Buldana, Maharashtra, 443001, India
12. Agricultural Research Station-TNAU, Bhavanisagar, Tamil Nadu, 638451, India
13. Agricultural Research Station MPKV, 415, Karad, Maharashtra, India
14. National Academy of Agricultural Research Management, Rajendranagar, Hyderabad, Andhra Pradesh, 500 030, India
Abstract:Sorghum Sorghum bicolor (L.) Moench] is a very important crop in the arid and semi-arid tropics of India and African subcontinent. In the process of release of new cultivars using multi-location data major emphasis is being given on the superiority of the new cultivars over the ruling cultivars, while very less importance is being given on the genotype?×?environment interaction (GEI). In the present study, performance of ten Indian hybrids over 12 locations across the rainy seasons of 2008 and 2009 was investigated using GGE biplot analysis. Location attributed higher proportion of the variation in the data (59.3–89.9%), while genotype contributed only 3.9–16.8% of total variation. Genotype?×?location interaction contributed 5.8–25.7% of total variation. We could identify superior hybrids for grain yield, fodder yield and for harvest index using biplot graphical approach effectively. Majority of the testing locations were highly correlated. ‘Which-won-where’ study partitioned the testing locations into three mega-environments: first with eight locations with SPH 1606/1609 as the winning genotypes; second mega-environment encompassed three locations with SPH 1596 as the winning genotype, and last mega-environment represented by only one location with SPH 1603 as the winning genotype. This clearly indicates that though the testing is being conducted in many locations, similar conclusions can be drawn from one or two representatives of each mega-environment. We did not observe any correlation of these mega-environments to their geographical locations. Existence of extensive crossover GEI clearly suggests that efforts are necessary to identify location-specific genotypes over multi-year and -location data for release of hybrids and varieties rather focusing on overall performance of the entries.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号