基于高光谱的土壤不同颗粒含量预测分析 |
| |
引用本文: | 张雅梅,施梦月,王德彩,郭芳. 基于高光谱的土壤不同颗粒含量预测分析[J]. 土壤通报, 2021, 52(4): 777-784. DOI: 10.19336/j.cnki.trtb.2020022702 |
| |
作者姓名: | 张雅梅 施梦月 王德彩 郭芳 |
| |
作者单位: | 河南农业大学林学院,河南 郑州 450002 |
| |
基金项目: | 国家自然科学青年基金项目(41201210)、国家林草局生物安全与遗传资源项目(KJZXSA2019042)资助 |
| |
摘 要: | 以典型黄河下游冲积平原区的土壤为研究对象,分析土壤高光谱特征,探讨土壤质地不同粒级颗粒含量的统一估测途径,为土壤质地快速监测评价提供技术支持.选择原始光谱,及其倒数、对数、标准正交变换、多元散射变化、一阶微分、二阶微分共7种光谱变换形式,首先主成分降维,然后分别建立土壤黏粒、粉粒和砂粒含量的支持向量机预测模型,采用决定...
|
关 键 词: | 土壤 颗粒含量 高光谱 光谱变换 主成分分析 支持向量机 |
收稿时间: | 2020-02-27 |
Different Soil Particle Contents Prediction Based on Hyperspectral Data |
| |
Affiliation: | College of Forestry, Henan Agricultural University, Zhengzhou 450002 |
| |
Abstract: | The hyperspectral characteristics of different particle contents of soil in the typical alluvial plain of the lower Yellow River were investigated in order to provide technical support for rapid monitoring and evaluation of soil texture. Seven spectral transformation forms were selected, including the original spectrum and its reciprocal, logarithm, standard orthogonal transformation, multivariate scattering change, the first derivative and the second derivative. First, principal component analysis was applied to reduce dimension. Then, predictive models of the contents of clay, silt and sand were established with support vector machines. Three accuracy indices were selected including determination coefficient, mean absolute error and root mean squared error. The results showed that the logarithm of the original spectrum was the best spectral transformation form due to the best prediction with the R2 ≥ 0.6853, the MAE ≤ 0.1193 and the RMSE ≤ 0.1683. The variation range of clay content was relatively concentrated, showing the best prediction by the R2 of 0.8127, MAE of 0.0820 and RMSE of 0.1248. The soil spectrum was reduced dimension with principal component by selecting the best spectral transformation. Whereafter, the support vector machine modeling was used to predict the contents of clay, silt and sand in soil, which was realized a simple and fast hyperspectral estimation on soil texture. |
| |
Keywords: | |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《土壤通报》浏览原始摘要信息 |
|
点击此处可从《土壤通报》下载全文 |
|