首页 | 本学科首页   官方微博 | 高级检索  
     

基于三种空间预测方法的安庆市耕地土壤速效钾空间分布预测
引用本文:朱福斌,丁世伟,甘晓玉,黄海,吴锦松,马友华. 基于三种空间预测方法的安庆市耕地土壤速效钾空间分布预测[J]. 中国土壤与肥料, 2021, 0(1): 1-8
作者姓名:朱福斌  丁世伟  甘晓玉  黄海  吴锦松  马友华
作者单位:安徽农业大学资源与环境学院;安庆市种植业管理局
基金项目:2019年度高校协同创新“整合一批”协同创新项目“国产高分辨率对地观测系统安徽区域综合应用示范”(GXXT-2019-047)。
摘    要:以安徽省安庆市为研究区,选取环境变量因子(空间位置变量因子、地形变量因子、土壤变量因子、气候变量因子)作为变量因素,通过构建随机森林(Random Forest,RF)模型对研究区耕地土壤速效钾含量进行预测,并与普通克里金(Ordinary Kriging,OK)和反距离权重(Inverse Distance Weig...

关 键 词:耕地土壤  随机森林  空间分布预测  速效钾
收稿时间:2019-11-15

Prediction of spatial distribution of available potassium in cultivated soil of Anqing city based on three spatial prediction methods
ZHU Fu-bin,DING Shi-wei,GAN Xiao-yu,HUANG Hai,WU Jin-song,MA You-hua. Prediction of spatial distribution of available potassium in cultivated soil of Anqing city based on three spatial prediction methods[J]. Soil and Fertilizer Sciences, 2021, 0(1): 1-8
Authors:ZHU Fu-bin  DING Shi-wei  GAN Xiao-yu  HUANG Hai  WU Jin-song  MA You-hua
Affiliation:(School of Resources and Environment,Anhui Agricultural University,Hefei Anhui 230036;Anqing City Plantation Authority,Anqing Anhui 246000)
Abstract:Taking Anqing City of Anhui Province as the research area,a Random Forest model(RF)is constructed by selecting environmental variable factors(space position variable factor,topographic variable factor,soil variable factor,climate variable factor)as the variable factor.The content of available potassium is predicted and compared with the results by traditional spatial prediction methods of Ordinary Kriging(OK)and Inverse Distance Weight(IDW).The results show that the prediction accuracy of the three methods for the spatial distribution of available potassium in the study area is RF>OK>IDW,where the mean absolute error(MAE)and root mean square error(RMSE)of the RF model and the coefficient of determination(R2)are 30.93 mg·kg-1,41.31 mg·kg-1 and 0.58,which are 3.36%,5.95%,6.71%,11.86%and 18.37%,23.40%higher than those of OK and IDW.The overall trends of the three spatial distribution prediction methods are consistent,showing a high distribution in the southeast and a low distribution in the northwest.In summary,the RF model can better predict the available potassium content of cultivated soil in Anqing.Latitude,annual average temperature,soil parent material,elevation,longitude,and annual average precipitation are the main factors that affect the accuracy of the RF model.
Keywords:cultivated soil  random forest  spatial distribution prediction  available potassium
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《中国土壤与肥料》浏览原始摘要信息
点击此处可从《中国土壤与肥料》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号