首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Genotype x environment interactions for postweaning performance in crossbred calves grazing winter wheat pasture or dormant native prairie.
Authors:W A Phillips  M A Brown  A H Brown  S W Coleman
Institution:USDA-ARS, Grazinglands Research Laboratory, El Reno, OK 73036, USA. bphillip@grl.ars.usda.gov
Abstract:Data from 403 calves from Angus, Brahman, and reciprocal-cross cows sired by Polled Hereford bulls were used to evaluate the impact of postweaning backgrounding forages on postweaning BW, gains, and carcass traits. Calves were born (spring of 1991 through 1994) and reared on either endophyte-infected tall fescue or common bermudagrass pastures. After weaning, calves were transported 360 km to the Grazinglands Research Laboratory, west of El Reno, OK, and, within breed and preweaning forage, were assigned to one of the following winter stocker treatments: 1) winter wheat pasture or 2) dormant native prairie plus supplemental CP. In March, winter stocker treatments were ended and calves were grazed as a single group on cool-season grasses until early July (1992, 1993, and 1994) or late May (1995), when the feedlot phase began. In the feedlot, calves were fed a high concentrate diet for an average of 120 d until a backfat thickness of > 10 mm was reached. Calves were shipped in truck load lots to Amarillo, TX (350 km), for processing and collection of carcass data. Averaged over calf breed group, calves wintered on wheat pasture gained faster (P < 0.01) during the stocker phase (0.71 vs 0.43 kg); had heavier (P < 0.01) final feedlot weights (535 vs 512 kg); lower feedlot (P < 0.01) ADG (1.37 vs 1.53 kg); heavier (P < 0.01) carcass weights (337 vs 315 kg); larger (P < 0.01) longissimus muscle (84.9 vs 81.8 cm2); higher percentage (P < 0.01) of kidney, heart, and pelvic fat (2.32 vs 2.26); and higher (P < 0.01) dressing percentage (62.2 vs 61.3) than calves backgrounded on native prairie. Maternal heterosis for stocker ADG was evident in calves backgrounded on native prairie but not on winter wheat (P < 0.10), but the two environments were similar in maternal heterosis for feedlot ADG and carcass traits. Calves wintered on native prairie were restricted in growth and expressed compensatory gain during the feedlot phase but not during the spring stocker phase. Dormant native grasses can be used to winter stocker calves excess to the winter wheat pasture needs, but ownership of these calves would have to be retained through the feedlot phase to realize any advantage of built-in compensatory gain. Finally, these data suggest that expression of maternal heterosis for weight gain is more likely in calves backgrounded on native prairie than in calves grazed on winter wheat.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号