首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of elevated concentrations of ozone and carbon dioxide on the electrical impedance of leaves of silver birch (Betula pendula) clones
Authors:Repo Tapani  Oksanen Elina  Vapaavuori Elina
Affiliation:The Finnish Forest Research Institute, Joensuu Research Centre, P.O. Box 68, FIN-80101 Joensuu, Finland. tapani.repo@metla.fi
Abstract:Effects of elevated concentrations of tropospheric ozone ([O3]) and carbon dioxide ([CO2]) on leaves of two silver birch (Betula pendula Roth) clones were monitored for three growing seasons (1998, 1999, 2000) by means of electrical impedance spectroscopy (EIS). The field trial with open-top chambers (OTCs) was conducted on two clones (Clone 4 and Clone 80) with five treatments and four independent replicates. Treatments were: (1) outside control, (2) chamber control, (3) 2x ambient [O3], (4) 2x ambient [CO2] and (5) 2x ambient [CO2] + 2x ambient [O3]. Fumigations started in 1999 and continued in 2000. Measurements were made in 1998 before the fumigations and thereafter EIS was carried out four times in each season. The impedance spectra of about 10 leaves from each tree at each time were measured at 42 frequencies between 80 and 1 MHz. Leaf spectra were modeled by a distributed circuit element model (DCE) (one DCE in series with a resistor), which yields the extracellular and intracellular resistances, the relaxation time and the distribution coefficient of the relaxation time. The EIS properties of the leaves changed significantly during the growing season when new leaves were expanding. The clones differed in their EIS properties. Clone 4 had a significantly higher extracellular resistance and distribution coefficient than Clone 80. The clones responded similarly to the fumigation treatments. Differences between treatments emerged especially during the second fumigation season in 2000. Elevated [O3] reduced both the relaxation time and the extracellular resistance, indicating cell membrane damage. Elevated [CO2] increased the intracellular resistance, indicating changes in symplastic composition. The biological interpretation of the EIS parameters in birch leaves is discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号