首页 | 本学科首页   官方微博 | 高级检索  
     检索      


MAGNETIC RESONANCE SIGNAL CHANGES DURING TIME IN EQUINE LIMBS REFRIGERATED AT 4°C
Authors:GÉRALDINE BOLEN  DIMITRI HAYE  ROBERT DONDELINGER  VALERIA BUSONI
Institution:Department of Companion Animals and Equidae, Medical Imaging Section, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster, 20, Baltiment B41, 4000 Liège, Belgium.
Abstract:When ex vivo magnetic resonance (MR) imaging studies are undertaken, specimen conservation should be taken into account when interpreting MR imaging results. The purpose of this study was to assess MR changes during time in the anatomic structures of the equine digit on eight cadaver limbs stored at 4°C. The digits were imaged within 12 h after death and then after 1, 2, 7, and 14 days of refrigeration. After the last examination, four feet were warmed at room temperature for 24 h and reimaged. Sequences used were turbo spin echo (TSE) T1, TSE T2, short tau inversion recovery (STIR), and double-echo steady state (DESS). Images obtained were compared subjectively side by side for image quality and signal changes. Signal-to-noise ratio (SNR) was measured and compared between examinations. There were no subjective changes in image quality. A mild size reduction of the synovial recesses was detected subjectively. No signal change was seen subjectively except for bone marrow that appeared slightly hyperintense in STIR and slightly hypointense in TSE T2 sequence after refrigeration compared with day 0. Using quantitative analysis, significant SNR changes in bone marrow of refrigerated limbs compared with day 0 were detected in STIR and TSE T2 sequences. Warming at room temperature for 24 h produced a reverse effect on SNR compared with refrigeration with a significant increase in SNR in TSE T2 images. After 14 days of refrigeration a statistically significant decrease of SNR was found in bone marrow in TSE T2 and DESS sequences. The SNR in the deep digital flexor tendon was not characterized by significant change in SNR.
Keywords:foot  horse  magnetic resonance imaging  preservation  temperature
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号