首页 | 本学科首页   官方微博 | 高级检索  
     

大豆杂种产量的主-微位点组遗传分析
引用本文:杨加银,贺建波,管荣展,杨守萍,盖钧镒. 大豆杂种产量的主-微位点组遗传分析[J]. 作物学报, 2010, 36(9): 1468-1475. DOI: 10.3724/SP.J.1006.2010.01468
作者姓名:杨加银  贺建波  管荣展  杨守萍  盖钧镒
作者单位:1.南京农业大学大豆研究所 / 国家大豆改良中心 / 作物遗传与种质创新国家重点实验室,南京 210095;;2.江苏徐淮地区淮阴农业科学研究所 / 江苏省环洪泽湖生态农业生物技术重点实验室,江苏淮安 223001
基金项目:国家重点基础研究发展计划(973计划)项目,国家高技术研究发展计划(863计划)项目,国家自然科学基金项目,国家科技支撑计划项目,高等学校学科创新引智计划项目 
摘    要:选用来源于中国黄淮和美国的熟期组II~IV的8个大豆品种,按Griffing方法II设计,配成36个双列杂交组合(28个杂种组合+8个亲本)于2003-2005年进行田间试验。应用基于数量性状主基因+多基因遗传模型的主-微位点组分析法,解析8个大豆亲本产量的主、微位点组遗传构成及其效应,估计主、微位点组对产量杂种优势的贡献。结果表明,8个大豆亲本间产量由6个主位点组加微位点组控制,主位点组、微位点组分别解释表型变异的75.98%和10.81%。6个主位点组加性效应(aJ)分别为140.10、259.65、1.95、151.35、–32.70和45.00 kg hm–2,显性效应(dJ)分别为177.15、314.25、105.75、75.90、242.85和171.00 kg hm–2。杂种遗传构成包括主位点组杂合显性效应、主位点组纯合加性效应、微位点组杂合显性效应和微位点组纯合加性效应4部分,相对重要性依次递减,以显性效应为主,加性效应为辅。亲本间主、微位点组及其遗传效应的解析阐释了各杂种组合的遗传特点,还提供了进一步挖掘遗传潜力进行优势改良的基础。

关 键 词:大豆  产量  杂种优势  主-微位点组  加性效应  显性效应  
收稿时间:2010-02-03

Genetic Analysis in Terms of Major-Minor Locus Group Constitutions of Yield in Hybrid Soybean
YANG Jia-Yin,HE Jian-Bo,GUAN Rong-Zhan,YANG Shou-Ping,GAI Jun-Yi. Genetic Analysis in Terms of Major-Minor Locus Group Constitutions of Yield in Hybrid Soybean[J]. Acta Agronomica Sinica, 2010, 36(9): 1468-1475. DOI: 10.3724/SP.J.1006.2010.01468
Authors:YANG Jia-Yin  HE Jian-Bo  GUAN Rong-Zhan  YANG Shou-Ping  GAI Jun-Yi
Affiliation:Soybean Research Institute of Nanjing Agricultural University / National Center for Soybean Improvement / National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095, China; Huaiyin Institute of Agricultural Sciences of Xuhuai Region / Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaian 223001, China
Abstract:The analysis of major-minor locus groups of diallel crosses based on major gene plus polygene mixed inheritance model provides a way to explore the genetic structure of hybrids among a group of materials. Eight soybean parental materials, seven from Huang-Huai region in China and one from the US with maturity group II–IV were used to develop a set of 36 diallel crosses (including 28 F1 crosses and eight parents) according to the Griffing II pattern. The materials were tested in 2003-2005. From the analysis of major-minor locus groups of the 36 materials, the results showed that six major locus groups plus minor locus groups were detected to explain 75.98% and 10.81% of the phenotypic yield variation, respectively. Which indicated that major locus groups were the major source of genetic variation among the materials with their additive effects (aJ) of 140.10, 259.65, 1.95, 151.35, –32.70, and 45.00 kg ha–1 and dominance effects (dJ) of 177.15, 314.25, 105.75, 75.90, 242.85, and 171.00 kg ha1, respectively, while the minor locus groups were a supplement source in the genetic system. The genetic constitutions of the hybrids were composed of heterozygous dominance effects of major locus groups, homozygous additive effects of major locus groups, heterozygous dominance effects of minor locus groups and homozygous additive effects of minor locus groups, with their relative importance in a descending order. The dissection of the relative importance of the genetic effects of major-minor locus groups helps to explain the genetic characteristics of the hybrids among the parents and provides the genetic basis for further mining the genetic potential of parental materials in the improvement of hybrids.
Keywords:Soybean  Yield  Heterosis  Major-minor locus groups  Additive effects  Dominance effects
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《作物学报》浏览原始摘要信息
点击此处可从《作物学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号