首页 | 本学科首页   官方微博 | 高级检索  
     


Bioremediation of CCA-treated wood by brown-rot fungi Fomitopsis palustris, Coniophora puteana, and Laetiporus sulphureus
Authors:S. Nami?Kartal  author-information"  >  author-information__contact u-icon-before"  >  mailto:nami@rish.kyoto-u.ac.jp"   title="  nami@rish.kyoto-u.ac.jp"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Erman?Munir,Tomo?Kakitani,Yuji?Imamura
Affiliation:(1) Forestry Faculty, Istanbul University, Istanbul, 80895, Turkey;(2) Forestry Department, Hasanuddin University, Makassar, 90245, Indonesia;(3) Tsukuba Research Institute, Sumitomo Forestry Co., Ltd., Ibaraki 300-2646, Japan;(4) Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan;(5) Present address: Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
Abstract:This study evaluated oxalic acid accumulation and bioremediation of chromated copper arsenate (CCA)-treated wood by three brown-rot fungi Fomitopsis palustris, Coniophora puteana, and Laetiporus sulphureus. The fungi were first cultivated in a fermentation broth to accumulate oxalic acid. Bioremediation of CCA-treated wood was then carried out by leaching of heavy metals with oxalic acid over a 10-day fermentation period. Higher amounts of oxalic acid were produced by F. palustris and L. sulphureus compared with C. puteana. After 10-day fermentation, oxalic acid accumulation reached 4.2 g/l and 3.2 g/l for these fungi, respectively. Fomitopsis palustris and L. sulphureus exposed to CCA-treated sawdust for 10 days showed a decrease in arsenic of 100% and 85%, respectively; however, C. puteana remediation removed only 18% arsenic from CCA-treated sawdust. Likewise, chromium removal in F. palustris and L. sulphureus remediation processes was higher than those for C. puteana. This was attributed to low oxalic acid accumulation. These results suggest that F. palustris and L. sulphureus remediation processes can remove inorganic metal compounds via oxalic acid production by increasing the acidity of the substrate and increasing the solubility of the metals.An erratum to this article can be found at
Keywords:Oxalic acid  Bioremediation  CCA wood preservative  Treated waste wood  Fomitopsis palustris  Coniophora puteana  Laetiporus sulphureus
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号