Locating QTLs controlling constitutive root traits in the rice population IAC 165 × Co39 |
| |
Authors: | B. Courtois L. Shen W. Petalcorin S. Carandang R. Mauleon Z. Li |
| |
Affiliation: | (1) International Rice Research Institute, MCPO Box 3127, 1271 Makati City, Philippines;(2) Present address: Cirad-Biotrop, TA40/03, Avenue Agropolis, 34398 Montpellier Cedex 5, France;(3) Present address: Texas Tech University, TX79409-2122, Lubbock, USA |
| |
Abstract: | Drought is an important constraint to productivity in rainfed rice environments. Improvement in the various components of rice drought tolerance is now possible through the identification and manipulation of DNA markers linked with genes controlling these quantitative traits. A recombinant inbred line population was derived from the cross IAC165 × Co39. A molecular map was built that contained 182 RFLP and microsatellite markers. Segregation distortions were limited to a few chromosomal segments. Constitutive root traits, including maximum root length, root thickness and root dry weight in various layers, were measured on 125 lines in a greenhouse replicated experiment. QTL analysis was performed using composite interval mapping. Between 1and 4 main effect QTLs, which explained individually between 5.5 and 24.8% of the variability, were identified for each trait. The most important genomic regions, which carried QTLs for several traits, were found on chromosomes 1, 4, 9, 11 and 12.The QTL locations were in good agreement with previous studies on these traits, confirming the value of the QTLs in a different genetic background. Epistasis represented a non-negligible component of the observed variability for some of the traits but was not detected for others. These results add to the understanding of the genetic control of root morphology in rice, which is necessary to strengthen marker-aided selection programs to improve varieties for water-limited environments. This revised version was published online in July 2006 with corrections to the Cover Date. |
| |
Keywords: | drought tolerance O. sativa QTLs root depth root thickness |
本文献已被 SpringerLink 等数据库收录! |
|