首页 | 本学科首页   官方微博 | 高级检索  
     

基于贝叶斯网络的城市居民出行方式研究
引用本文:申健,王建锋. 基于贝叶斯网络的城市居民出行方式研究[J]. 湖南农业大学学报(自然科学版), 2015, 0(3): 73-77
作者姓名:申健  王建锋
作者单位:(1.北京科技大学 数理学院 北京 海淀100083;2.中国农业大学 理学院 北京 海淀100083)
摘    要:为解决含有不确定信息的非期望产出效率评价问题,建立了一个非期望产出的随机DEA模型.该模型将非期望产出作为负期望产出进行处理,引入了期望效率值、显著性水平来刻画随机问题,并通过机会约束规划的相关知识将模型转化为确定形式.对模型的最优值的相关性质进行了探讨,说明最优值与期望效率值、显著性水平之间的关系.最后给出数值实验说明该模型的有效性.

关 键 词:数据包络分析  非期望产出  随机性

Bayesian Network Modeling for Trip Mode Analysis of Urban Residents
SHEN Jian,WANG Jian-feng. Bayesian Network Modeling for Trip Mode Analysis of Urban Residents[J]. Journal of Hunan Agricultural University, 2015, 0(3): 73-77
Authors:SHEN Jian  WANG Jian-feng
Affiliation:(1.School of Mathematics and Physics, University of science and technology Beijing, Beijing100803, China; 2.College of Science, China Agricultural University, Beijing100083,China )
Abstract:The trip modes of residents in Xi''an city were taken as study subject, and the survey data of some regions in 2013 were collected. A Bayesian network for trip mode analysis was developed by structure and parameter learning, using correlation analysis, K2 algorithm and Bayesian method. Based on the Bayesian network, the influences of private car, gender, age and travel purpose on the choice of trip mode were analyzed. The results show that the Bayesian network can express the complicated relationship between the trip mode and the causes. Moreover, the Bayesian network has a high accuracy. The study can contribute to the development of the trip behaviors theory of residents in Xi''an city.
Keywords:data envelopment analysis(DEA)   undesirable outputs   stochastic
点击此处可从《湖南农业大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《湖南农业大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号