首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The impact of mulch type on soil organic carbon and nitrogen pools in a sloping site
Authors:Shahla Hosseini Bai  Timothy J Blumfield  Frédérique Reverchon
Institution:1. Environmental Futures Centre, Griffith School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD, 4111, Australia
2. Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
Abstract:Three mulch treatments were tested for their ability to control erosion on a sloping site. Additionally, the choice of mulch can also enhance revegetation success and improve soil organic matter input. This study aimed to investigate the effects of three mulching treatments, hydro-seeding, granite mulch and forest mulch, on soil C and N pools at different positions on highly erodible slope with approximately 30 % gradient. Soil moisture, total C (TC), total N (TN), hot water-extractable organic C (HWEOC), hot water-extractable total N (HWETN), microbial biomass C and N (MBC and MBN), inorganic N and potentially mineralisable N were measured. All variables were significantly higher in soils amended with forest mulch than those with hydro-seeding and granite mulch, for the same slope positions. Soil moisture was significantly higher in the lower slope position than middle and upper slope positions in hydro-seeding and granite mulch treatments, whereas no slope effect was observed on soil moisture under the forest mulch application. In the forest mulch treatment, the upper slope position had higher soil TC, TN, HWEOC, HWETN, MBC, MBN, NO3 ?-N and total inorganic N than the middle and lower slope positions. Five years following mulch application, forest mulch still exerted a significant influence on soil fertility compared to the other treatments and the influence on soil moisture suggests that this treatment would be the most effective in the control of water-driven soil erosion on this steep site.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号