首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatial and seasonal variations in photosynthetic properties within a beech (Fagus crenata Blume) crown
Authors:Hideyuki Saito  Yoshitaka Kakubari
Institution:(1) Faculty of Agriculture, University of Shizuoka, 422-8529 Shizuoka, Japan
Abstract:The light response curve and the intercellular CO2 concentration response curve of CO2 assimilation rate were investigated together with the light conditions at the four different heights within the beech crown from 1995 to 1997 on Mt. Fuji in Japan. On the seasonal fluctuation, the CO2 assimilation rate at light saturated condition increased rapidly in May, and attained to the maximum between the end of June and July, thereafter, slightly decreased until the middle of August and rapidly decreased in September and October. The daily sum of photosynthetic photon flux density attenuated with deeping within the crown, and particularly, the relative value on 2nd position dropped to only 30%. TheA max decreased from 10 to 5μmol m−2 s−1, approximately, with deeping within the crown. The light saturation point, quantum yield, light compensation point and dark respiration rate also varied with deeping. These results suggest that the photosynthetic properties vary gradually from sun to shade leaves along the light attenuation within a beech crown. At light saturated condition, the stomatal conductance and mesophyll conductance were strongly correlated withA max among the four different heights (r > 0.96, respectively). TheC i/C a ratio was around 0.8, and there were no remarkable differences among the four different heights. These results suggest that the vertical gradient ofA max depends on the variation of mesophyll conductance. The stomatal conductance may be also one of the major factor in the vertical gradient ofA max. However the intercellular CO2 concentration doesn’t influence the vertical gradient ofA max within the crown. This work is supported by the Sasagawa Scientific Research Grant from The Japan Science Society and Grant-in-Aid for Scientific Research (C).
Keywords:CO2 assimilation  light conditions  mesophyll conductance  Siebold’  s beech (Fagus crenata Bl  ) crown  stomatal conductance
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号