首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Seasonal variations of nitrous oxide emission in relation to nitrogen fertilization and energy crop types in sandy soil
Authors:Y Kavdir  HJ Hellebrand  J Kern
Institution:aCanakkale Onsekiz Mart University, Agricultural Faculty, Department of Soil Science, 17020 Canakkale, Turkey;bLeibniz-Institute of Agricultural Engineering Potsdam-Bornim, 14469 Potsdam, Germany
Abstract:Nitrous oxide (N2O) is a greenhouse gas and agricultural soils are major sources of atmospheric N2O. Its emissions from soils make up the largest part in the global N2O budget. Research was carried out at the experimental fields of the Leibniz-Institute of Agricultural Engineering Potsdam-Bornim (ATB). Different types (mineral and wood ash) and levels (0, 75 and 150 kg N ha−1) of fertilization were applied to annual (rape, rye, triticale and hemp) and perennial (poplar and willow) plants every year. N2O flux measurements were performed 4 times a week by means of gas flux chambers and an automated gas chromatograph between 2003 and 2005. Soil samples were also taken close to the corresponding measuring rings. Soil nitrate and ammonium were measured in soil extracts.N2O emissions had a peak after N fertilization in spring, after plant harvest in summer and during the freezing–thawing periods in winter. Both fertilization and plant types significantly altered N2O emission. The maximum N2O emission rate detected was 1081 μg N2O m−2 h−1 in 2004. The mean annual N2O emissions from the annual plants were more than twofold greater than those of perennial plants (4.3 kg ha−1 vs. 1.9 kg ha−1). During January, N2O fluxes considerably increased in all treatments due to freezing–thawing cycles. Fertilization together with annual cropping doubled the N2O emissions compared to perennial crops indicating that N use efficiency was greater for perennial plants. Fertilizer-derived N2O fluxes constituted about 32% (willow) to 67% (rape/rye) of total soil N2O flux. Concurrent measurements of soil water content, NO3 and NH4 support the conclusion that nitrification is main source of N2O loss from the study soils. The mean soil NO3-N values of soils during the study for fertilized soils were 1.6 and 0.9 mg NO3-N kg−1 for 150 and 75 kg N ha−1 fertilization, respectively. This value reduced to 0.5 mg NO3-N kg−1 for non-fertilized soils.
Keywords:Nitrous oxide  N2O  Emission  Soil nitrate  Energy crops
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号