首页 | 本学科首页   官方微博 | 高级检索  
     


Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils
Authors:Petkova Aneta T  Leapman Richard D  Guo Zhihong  Yau Wai-Ming  Mattson Mark P  Tycko Robert
Affiliation:Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD 20892-0520, USA.
Abstract:Amyloid fibrils commonly exhibit multiple distinct morphologies in electron microscope and atomic force microscope images, often within a single image field. By using electron microscopy and solid-state nuclear magnetic resonance measurements on fibrils formed by the 40-residue beta-amyloid peptide of Alzheimer's disease (Abeta(1-40)), we show that different fibril morphologies have different underlying molecular structures, that the predominant structure can be controlled by subtle variations in fibril growth conditions, and that both morphology and molecular structure are self-propagating when fibrils grow from preformed seeds. Different Abeta(1-40) fibril morphologies also have significantly different toxicities in neuronal cell cultures. These results have implications for the mechanism of amyloid formation, the phenomenon of strains in prion diseases, the role of amyloid fibrils in amyloid diseases, and the development of amyloid-based nano-materials.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号