首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Manganese efficiency and maganese‐uptake kinetics of raya (Brassica juncea), wheat (Triticum aestivum), and oat (Avena sativa) grown in nutrient solution and soil
Authors:Mohammad Hassan Sayyari‐Zahan  Upkar Singh Sadana  Bernd Steingrobe  Norbert Claassen
Institution:1. Department of Crop Sciences, Plant Nutrition, Georg‐August University Goettingen, Carl‐Sprengel‐Weg 1, 37075 Goettingen, Germany;2. Department of Soils, Punjab Agricultural University, Ludhiana‐141004, India
Abstract:Manganese (Mn) deficiency is reported worldwide and often decreases crop yield. However, plant species differ in their susceptibility to Mn deficiency. Poaceae are often inefficient, whereas Brassicaceae seem to be efficient in Mn uptake. The objective of this paper was to determine the relevance of Mn‐uptake kinetics, root‐system size, and Mn mobilization for differences in Mn efficiency of wheat, oat, and raya. To determine Mn‐uptake kinetics, wheat (Triticum aestivum L. cv. PBW 343), raya (Brassica juncea L. cv. RLM 619), and oat (Avena sativa L. cv. Aragon) were grown in a growth chamber together in complete nutrient solution having an average Mn concentration of 90, 180, 360, 910, and 2270 nmol L–1. For determining Mn efficiency of the three species in soil, the plants were grown for 22 d in pots filled with 3 kg of a loamy soil low in Mn availability (pH (CaCl2) 7.4; DTPA‐extractable Mn: 3.5 mg (kg soil)–1). The soil was fertilized with 0, 1, 2, 4, and 8 mmol Mn (kg soil)–1 resulting in Mn soil‐solution concentrations ranging from 40 to 90 nmol L–1, hence lower than in the solution experiment. In order to determine Mn soil‐solution concentration close to the root surface, the root length density was increased by growing two plants of raya and four plants of wheat in only 250 mL soil columns for 25 d. In solution culture at high concentrations, raya showed a higher Mn uptake compared to wheat and oat. However, at low Mn supply, all three species were comparably Mn‐efficient, i.e., plant growth was similar, and also the uptake was similar. In soil, the highest yield was achieved for raya in the unfertilized treatment whereas the Poaceae needed at least a fertilization of 1 mmol Mn (kg soil)–1. The Poaceae showed a yield reduction of about 40% in the unfertilized treatment. Manganese concentration in the shoot dry weight was always higher in raya than in wheat or oat. This was due to a higher Mn uptake whereas relative shoot‐growth rate and root‐to‐shoot ratio were similar among the species. The higher Mn uptake of raya in soil was in contradiction to the comparable Mn‐uptake kinetics of the three crops at low Mn concentration in solution. This points to plant differences in their ability to affect Mn availability in the rhizosphere. In the bulk soil, all the crops decreased Mn solution concentration, but this effect was somewhat less for raya. But in the rhizosphere, raya increased Mn soil‐solution concentration significantly to 58 nmol L–1, as compared to 37 nmol L–1 of the unplanted control soil. In contrast, wheat showed a Mn solution concentration of 25 nmol L–1 which was not significantly different from the control. The results indicate that differences in Mn efficiency among the crops studied are related to their ability to affect the solubility of Mn in the rhizosphere.
Keywords:manganese acquisition  manganese mobilization  Michaelis‐Menten kinetics  rhizosphere  root growth
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号