首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Genetic combining ability of glucoraphanin level and other horticultural traits of broccoli
Authors:Jason M Abercrombie  Mark W Farnham  James W Rushing
Institution:(1) U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, The Clemson University Coastal Research and Education Center, 2700 Savannah Highway, Charleston, SC, 29414-5334, U.S.A.
Abstract:Broccoli (Brassica oleracea L., Italica Group) is a source of glucosinolates and their respective isothiocyanate metabolites that are believed to have chemoprotective properties in humans. Glucoraphanin (4-methylsulfinyl-butyl glucosinolate) is a predominant glucosinolate of broccoli. Its cognate isothiocyanate, sulforaphane, has proven a potent inducer of phase II detoxification enzymes that protect cells against carcinogens and toxic electrophiles. Little is known about the genetic combining ability for glucosinolate levels or the types of genetic variation (i.e., additive vs. dominance) that influence those levels in broccoli. In this study, a diallel mating design was employed in two field experiments to estimate combining abilities for glucoraphanin content. The diallel population was developed by crossing nine doubled-haploid (inbred) parents in all possible combinations (36), excluding the reciprocals. Horticultural traits of all entries were assessed on a plot basis. In fall 2001, glucoraphanin concentration of broccoli heads ranged from 0.83 to 6.00 μmol/gdw, and in spring 2002, ranged from 0.26 to 7.82 μmol/gdw. In both years, significant general combining ability was observed for glucoraphanin concentration and total head content, days from transplant to harvest, head weight, and stem diameter. Conversely, no significant specific combining ability was observed for any trait in either year. Results indicate that a given inbred will combine with others to make hybrids with relatively predictable levels of head glucoraphanin as well as, other important horticultural traits. This should allow identification of inbreds that typically contribute high glucoraphanin levels when hybridized with others.Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.
Keywords:diallel  genetic combining ability  glucoraphanin  phase II enzymes  specific combining ability
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号