首页 | 本学科首页   官方微博 | 高级检索  
     

基于近红外光谱的小麦品质分类研究
引用本文:毛晓东 孙来军 戴长军 惠光艳 徐璐璐. 基于近红外光谱的小麦品质分类研究[J]. 中国农学通报, 2013, 29(36): 386-390. DOI: 10.11924/j.issn.1000-6850.2013-1332
作者姓名:毛晓东 孙来军 戴长军 惠光艳 徐璐璐
作者单位:1. 黑龙江大学2. 黑龙江省农科院3. 黑龙江大学电子工程学院
基金项目:2013年度黑龙江大学研究生创新科研项目“基于近红外光谱技术的小麦品质分类研究”资助.
摘    要:为了快速、简便、准确地鉴别小麦品质的类别,本研究提出了应用近红外光谱分析技术结合BP神经网络的鉴别方法对小麦进行品质分类。研究过程中对小麦样品的光谱数据进行了详细分析,采用马氏距离剔除了光谱数据中异常数据,并通过主成分分析说明利用近红外光谱鉴别小麦品质分类的可行性。为了提高所建模型的性能,采用SPXY算法对小麦样品进行合理的划分。并选取了一阶微分加归一化的预处理方法来处理光谱数据,消除无关信息和噪声对小麦光谱数据的影响。运用偏最小二乘法压缩光谱数据,减少了数据量,节省建模时间。最后采用BP神经网络方法建立了小麦品质分类模型。实验结果显示:模型的鉴别效果较好,对强筋样品识别的准确率高达94.4%,弱筋样品识别的准确率高达100%。实现了快速、准确地对小麦品质强筋和弱筋两类的鉴别,对小麦生产、市场交易及食品加工有着非常重要的意义。

关 键 词:主成分  主成分  聚类分析  综合表现  
收稿时间:2013-05-08
修稿时间:2013-06-19

Study on Classification of Wheat Quality Based on Near Infrared Spectroscopy
Mao Xiaodong,Sun Laijun,Dai Changjun,Hui Guangyan,Xu lulu. Study on Classification of Wheat Quality Based on Near Infrared Spectroscopy[J]. Chinese Agricultural Science Bulletin, 2013, 29(36): 386-390. DOI: 10.11924/j.issn.1000-6850.2013-1332
Authors:Mao Xiaodong  Sun Laijun  Dai Changjun  Hui Guangyan  Xu lulu
Affiliation:(Key Laboratory of Electronics Engineering, College of Heilongfiang Province (Heilongiiang University), Harbin 150080)
Abstract:In order to quick, easy and accurately identify the classification of wheat quality, this paper put forward using identification method of near infrared spectral analysis technology combined with BP neural network for classification of wheat. Samples of wheat were carried out a detailed analysis of spectral data in the process of research.First of all, Mahalanob distance was applied on spectral data filtering, which could eliminate abnormal spectrum.And through principal component analysis explained that using near infrared spectroscopy identify the feasibility of the wheat quality classification. In order to improve the performance of the model, SPXY algorithm was used for reasonable division of samples of wheat.Then using first derivative and SNV which were commonly used in data processing method dealt with spectral data ,.which could eliminate irrelevant information and noise impact on wheat spectral data. partial least squares method was used to compress the data, which could reduce the amount of data and save modeling time.Finally,BP neural network as the modeling method is used to establish identification model of wheat quality. Experimental result showed that: the model identification effect is good, the recognition accuracy of strong gluten samples is as high as 94.4%, the identification accuracy of weak gluten samples is as high as 100%, which has realized quickly and accurately classification between strong gluten and weak gluten wheat, which has a very important significance on wheat production, market trading and food processing.
Keywords:BP neural network
本文献已被 维普 等数据库收录!
点击此处可从《中国农学通报》浏览原始摘要信息
点击此处可从《中国农学通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号