首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Genotypic and temperature effects on wheat grain yield and quality in a hot irrigated environment
Authors:I S A Tahir    N Nakata    A M Ali    H M Mustafa    A S I Saad    K Takata    N Ishikawa  and O S Abdalla
Institution:Faculty of Agriculture, Tottori University, Koyama 4-101, Tottori 680-8553, Japan;;Agricultural Research Corporation, PO Box 126, Wad Medani, Sudan;;National Agricultural Research Center for Western Region, Fukuyama, Hiroshima 721-8514, Japan;;ICARDA, PO Box 5466, Aleppo, Syria;;Corresponding author, E-mail:
Abstract:High temperature influences both grain yield and end‐use quality of wheat. The objectives of this study were to evaluate the performance of selected wheat genotypes under heat stress and to examine the effects of high temperatures during grain filling on grain yield and end‐use quality parameters. Fifteen bread wheat genotypes in 2000/2001 and 18 genotypes in 2002/2003 were evaluated under the optimum and late‐sowing conditions of the irrigated hot environment of the Gezira Research Farm, Wad Medani, Sudan. The genotypes comprised released varieties and elite lines from the Sudanese wheat improvement programme. Data collected included grain yield, grain weight and grain end‐use quality including protein content, protein composition, SDS sedimentation values (SDSS) and gluten strength as determined by mixograph analyses. High temperatures significantly decreased grain yield by decreasing grain weight. Although genotypes exhibited variation in magnitude of response, results indicated that high temperature during grain filling increased both soluble and insoluble protein contents, SDSS, mixograph peak height (MPH) and the descending slope at 2 min past peak (MDS). In contrast, mixograph peak time (MPT) and the curve width at 2 min past peak (MCW) were significantly decreased. Flour protein correlated positively with SDSS, MPH and MDS and negatively with MCW. MPT correlated negatively with MDS and positively with MCW. Results indicate that high temperature increased both soluble and insoluble protein contents, SDSS and MPH, and hence the gluten strength, but decreased flour mixing time and tolerance and hence the dough elasticity. Variation observed among genotypes suggests that grain end‐use quality could be improved under high temperature conditions utilizing the available variability; however, it might require evaluation under various growing conditions.
Keywords:Triticum aestivum            high temperature  grain quality  late sowing  mixograph parameters
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号