首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Review of denitrification in tropical and subtropical soils of terrestrial ecosystems
Authors:Yongbo Xu  Zhihong Xu  Zucong Cai  Frédérique Reverchon
Institution:1. College of Tobacco Science, Yunnan Agricultural University, Kunming, 650201, People’s Republic of China
2. Environmental Futures Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, QLD, 4111, Australia
3. School of Geography Science, Nanjing Normal University, Nanjing, 210046, People’s Republic of China
Abstract:

Purpose

Denitrification has been extensively studied in soils from temperate zones in industrialized countries. However, few studies quantifying denitrification rates in soils from tropical and subtropical zones have been reported. Denitrification mechanisms in tropical/subtropical soils may be different from other soils due to their unique soil characteristics. The identification of denitrification in the area is crucial to understand the role of denitrification in the global nitrogen (N) cycle in terrestrial ecosystems and in the interaction between global environmental changes and ecosystem responses.

Materials and methods

We review the existing literature on microbially mediated denitrification in tropical/subtropical soils, attempting to provide a better understanding about and new research directions for denitrification in these regions.

Results and discussion

Tropical and subtropical soils might be characterized by generally lower denitrification capacity than temperate soils, with greater variability due to land use and management practices varying temporally and spatially. Factors that influence soil water content and the nature and rate of carbon (C) and N turnover are the landscape-scale and field-scale controls of denitrification. High redox potential in the field, which is mainly attributed to soil oxide enrichment, may be at least one critical edaphic variable responsible for slow denitrification rates in the humid tropical and subtropical soils. However, soil pH is not responsible for these slow denitrification rates. Organic C mineralization is more important than total N content and C/N in determining denitrification capacity in humid subtropical soils. There is increasing evidence that the ecological consequence of denitrification in tropical and subtropical soils may be different from that of temperate zones. Contribution of denitrification in tropical and subtropical regions to the global climate warming should be considered comprehensively since it could affect other greenhouse gases, such as methane (CH4) and carbon dioxide (CO2), and N deposition.

Conclusions

Tropical/subtropical soils have developed several N conservation strategies to prevent N losses via denitrification from the ecosystems. However, the mechanisms involved in the biogeochemical regulation of tropical and subtropical ecosystem responses to environmental changes are largely unknown. These works are important for accurately modeling denitrification and all other simultaneously operating N transformations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号