首页 | 本学科首页   官方微博 | 高级检索  
     

偏最小二乘在遥感监测西藏草地生物量上的应用
引用本文:张正健,刘志红,郭艳芬,韩建宁,李扬. 偏最小二乘在遥感监测西藏草地生物量上的应用[J]. 草地学报, 2009, 17(6): 735-739. DOI: 10.11733/j.issn.1007-0435.2009.06.008
作者姓名:张正健  刘志红  郭艳芬  韩建宁  李扬
作者单位:成都信息工程学院资源环境学院, 成都, 610225
摘    要:在多年平均年最大归一化植被指数(NDVI)的基础上,结合西藏地区年降雨量、年积温等气象资料,利用偏最小二乘(partial least squares, PLS)回归方法对数据进行分析并建立西藏地区草地生物量与归一化植被指数、降雨量等解释变量的回归估测模型.并和一般最小二乘法(ordinary least squares, OLS)中的逐步回归法(Stepwise)相比较.结果表明:草地生物量与年最大NDVI值和年降雨量有很强的相关性,偏最小二乘回归在拟合及估测效果上均优于一般最小二乘的逐步回归法,回归方程的相关系数为0.89,取得了较为可靠的结果.偏最小二乘回归在解释变量多、样本个数少、变量间存在多重共线性时尤为有效,为遥感监测植被生物量时的数据处理提供了新的途径.

关 键 词:偏最小二乘回归  一般最小二乘回归  生物量  NDVI  降雨量  
收稿时间:2009-03-16

The Application of Partial Least Squares to Tibet's Grassland Biomass Monitoring by Remote Sensing
ZHANG Zheng-jian,LIU Zhi-hong,GUO Yan-fen,HAN Jian-ning,LI Yang. The Application of Partial Least Squares to Tibet's Grassland Biomass Monitoring by Remote Sensing[J]. Acta Agrestia Sinica, 2009, 17(6): 735-739. DOI: 10.11733/j.issn.1007-0435.2009.06.008
Authors:ZHANG Zheng-jian  LIU Zhi-hong  GUO Yan-fen  HAN Jian-ning  LI Yang
Affiliation:College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan Province 610225, China
Abstract:Remote sensing is a very fast and effective way to monitor the grassland biomass,the previous studies are mostly based on the correlation of vegetation index(VI) and biomass.In this paper,the method of partial least squares regression(PLSR) was used to set up the regression and prediction models between grassland biomass and normalized difference vegetation index(NDVI) based on the multi-year average annual maximum normalized difference vegetation index(NDVI) combined with annual rainfall,annual accumulated...
Keywords:NDVI  Partial least squares regression (PLSR)  Ordinary least squares regression (OLSR)  Biomass  Normalized difference vegetation index (NDVI)  Rainfall
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《草地学报》浏览原始摘要信息
点击此处可从《草地学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号