首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Exogenous calcium alleviates the impact of cadmium-induced oxidative stress in Lens culinaris medic. Seedlings through modulation of antioxidant enzyme activities
Authors:Dibyendu Talukdar
Institution:1. Plant Cell and Stress Biology Laboratory, Department of Botany, R.P.M. College, University of Calcutta, Uttarpara, Hooghly, 712258, India
Abstract:The effect of calcium (Ca) on lentil (Lens culinaris Medic.) seedlings exposed to cadmium (Cd) stress was studied by investigating plant growth and antioxidant enzyme activities. Plants were grown for 14 days in full-strength Hoagland nutrient media supplemented with Cd concentrations of 0, 10, 20, and 40 μM, and on corresponding medium supplied with 5 mM Ca(NO3)2 prior to Cd addition. Increasing Cd led to accumulation of metal and reduced the fresh weight of the shoots more strongly than that of the roots. Cd concentrations of 20 and 40 μM were selected to study its toxic effect on seedlings. Activities of superoxide dismutase, ascorbate peroxidase, catalase, dehydroascorbate reductase, and glutathione reductase decreased at much higher magnitude in the shoots than those observed in the roots under Cd exposure. Failure of antioxidant defense in scavenging of reactive oxygen species was evidenced by abnormal rise in H2O2, resulting in enhancement of lipid peroxidation and membrane electrolyte leakage as the marks of Cd-induced oxidative stress in lentil seedlings. Ca priming in the media significantly reduced the Cd accumulation and considerably alleviated the adverse impact of Cd treatment by modulating the antioxidant enzyme activity. Mitigation of Cd-induced stress by Ca application was strongly suggested by declining levels of H2O2 and consequent lowering of oxidative damage of membrane. Consequently, this enhanced fresh mass of plant parts as the sign of Ca-mediated normal growth in Cd-treated lentil seedlings.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号