首页 | 本学科首页   官方微博 | 高级检索  
     


Cloning of a sodium channel gene and identification of mutations putatively associated with fenpropathrin resistance in Tetranychus urticae
Authors:Deok Ho Kwon  Si Hyeock Lee
Affiliation:a Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea
b Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
c Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921, Republic of Korea
Abstract:Tetranychus urticae Koch is the most serious mite pest to various orchard trees and garden plants. Biochemical and molecular analyses were conducted to elucidate resistance mechanisms in a fenpropathrin-resistant mite strain (FenR). No significant differences were found in the activities of carboxylesterase and glutathione-S-transferase between the susceptible (UD and PyriF) and FenR strains. Cytochrome P450 activity was highest in PyriF, followed by FenR and UD. Analysis of detoxification enzyme assays, therefore, suggested that metabolic detoxification plays little role, if any, in fenpropathrin resistance. However, the FenR strain showed approximately 104- and 33.3-fold slower knockdown responses than UD and PyriF strains, respectively, suggestive of sodium channel insensitivity as a major resistance mechanism. We cloned cDNA fragments of the para-homologous sodium channel α-subunit gene (Tuvssc) and determined its full-length nucleotide sequences. The complete open reading frame of Tuvssc was 6627 nucleotides, encoding 2209 amino acids. The amino acid sequences of Tuvssc were 47.5% and 51.2% identical to the fruit fly and varroa mite, respectively. Amino acid sequence comparison between the three strains revealed two mutations (L1022V and A1376D) and one deletion (HisDel1278-1280) found only in FenR mites, among which the L1022V mutation was proposed to play a major role in knockdown resistance to fenpropathrin.
Keywords:Two-spotted spider mite   Sodium channel   Fenpropathrin   Resistance   Target site insensitivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号