首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of ultrahigh hydrostatic pressure on the activity and structure of mushroom (Agaricus bisporus) polyphenoloxidase
Authors:Yi Jianyong  Jiang Bin  Zhang Zhong  Liao Xiaojun  Zhang Yan  Hu Xiaosong
Institution:College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China.
Abstract:High hydrostatic pressure (HHP, treatment pressure ≤700 MPa) is approved to be the most successful commercial nonthermal processing due to its minimal modifications in nutritional and sensory quality. However, for some pressure stable enzymes such as PPO, this unique technology can hardly inactivate them at treatment pressure below of 700 MPa. This study investigated the effects of ultrahigh hydrostatic pressure (UHHP, treatment pressure >700 MPa) on the activity of Agaricus bisporus mushroom polyphenoloxidase (PPO) both in the phosphate buffer and in the mushroom puree, and on the structure of the enzyme by means of circular dichroism (CD), fluorescence emission spectra, and sulphydryl group detection. The results showed that UHHP treatment at pressure from 800 to 1600 MPa caused significant inactivation on the PPO both in the phosphate buffer and in the mushroom puree. UHHP treatment at 1400 and 1600 MPa for 1 min reduced the enzyme activity by 90.4% and 99.2% in the buffer;, however, higher enzyme activity remained in the puree after UHHP treatment at the same condition. CD and fluorescence spectra analysis showed that the secondary and tertiary structures of UHHP treated mushroom PPO were changed. The sulphydryl group (SH) detection revealed that the SH content on the surface of UHHP treated mushroom PPO was increased. It has been suggested that the inactivation of mushroom PPO by UHHP treatment at pressure higher than 1000 MPa was due to the synergistic effect of the pressure and the heat arising from pressurization, in which heat plays a major role.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号