首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Die Entwicklung und der Zn−, Fe− und P-Gehalt höherer Pflanzen in Abhängigkeit vom Zinkangebot
Authors:A Rahimi  W Bussler
Abstract:The growth and Zn-, Fe- and P-contents of higher plants in relation to Zn-supply The influence of varied supply of zinc was studied on nine different plant species growing in water culture under controlled experimental conditions. The results of the trials were as follows: 1. The vegetative development of the plant was enhanced by increasing supply of zinc in the nutrient solution. Visible symptoms of zinc deficiency were observed in all plants tested up to a level of 10 μg Zn/l in the nutrient medium. Latent zinc deficiency is to be expected when the zinc supply lies between 10 and 100 μg/l. Normal plant development was recorded in the 100 μg/l Zn/l treatment. 2. The zinc content of all plant organs (except in the trial series without zinc) rose with increasing zinc supply. Zinc contents differed greatly depending on plant species. In onions deficiency symptoms appeared during plant development at a zinc content below 7.8 ppm in the dry matter of the leaves. The corresponding value for flax was 21.5 ppm Zn. The range of latent zinc deficiency was characterized by zinc contents between 13.8 and 37.5 PPm. The optimal zinc content differs depending on plant species. For these very varied Zn-treatments and different species, values between 15.8 and 52.0 were found. 3. Leaf Zn content does not always provide a reliable measure of the Zn-nutritional status of the plant. This is, because zinc contents are extremely dependent upon plant species, the age of the plant, and experimental conditions, etc. 4. A higher zinc concentration was measured in older than in younger leaves. 5. The phosphorus contents in all organs were depressed by increasing zinc supply in the nutrient solution. The leaves of the plants in the trial series without zinc had the heighest phosphorus content. The P:Zn ratio at optimal plant growth differs between species. In the control plants this ratio, measured in the younger leaves, was 100 in millet and 262 in soybean. When the symptoms of zinc deficiency are very pronounced, these values lie above 1000. Zinc deficiency does not occur if the P:Zn ratio is below 250 (except in Cotton and beans). 6. Increasing zinc supply led to a decrease in the iron content in the plant organs of all species tested. The iron content was particularly high in those plants which did not receive any zinc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号