首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of soil microbial indices along a revegetation chronosequence in grassland soils on the Loess Plateau,Northwest China
Affiliation:1. Centre for Mine Site Restoration, Department of Environment and Agriculture, Curtin University, GPO Box U1987, Bentley, WA 6102, Perth, Australia;2. School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Perth, Australia;3. Kings Park and Botanic Garden, Kings Park, WA 6005, Perth, Australia
Abstract:There is a growing interest in using soil microbial parameters as indicators of soil quality changes after revegetation of disturbed soils. This study investigated the changes in different soil microbial parameters as well as physico-chemical parameters as affected by vegetation rehabilitation of soil in the Loess plateau of China subjected to natural succession after enclosure. The results showed that the soil nutrients tend to be concentrated in the soil surface layer, especially the soil organic C, total N and alkali extractable N with soil organic C being doubled (up to 20 g kg−1) after 50 years of revegetation. Soil enzyme activities and microbial biomass C (Cmic) and N (Nmic) increased with rehabilitation time up to 23 years. After 23 years, soil Cmic and Nmic and enzyme activities remained stable. Enzyme activities increased rapidly during the early stage of revegetation, about 15–20 years after enclosure. Soil Cmic and Nmic also increased about 20% faster up to 23 years since enclosure in the 0–20-cm soil layer. Soil basal respiration (BR) in the 23 years site was higher than in other sites, indicating high microbial activity in this site. These findings demonstrated significant impacts of natural vegetation succession in overgrazed grassland on the properties of the surface soils, including the soil nutrients, organic matter, soil microbial biomass, respiration, and enzyme activities.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号