首页 | 本学科首页   官方微博 | 高级检索  
     

遥感图像中多分类问题的树型RBF神经网络方法
引用本文:苑进,刘雪美,江涛. 遥感图像中多分类问题的树型RBF神经网络方法[J]. 农业工程学报, 2004, 20(5): 173-177
作者姓名:苑进  刘雪美  江涛
作者单位:山东农业大学机械与电子学院,泰安,271018;山东科技大学地球信息科学与工程学院,泰安,271019
摘    要:该文探讨RBF映射理论在遥感影像分类中的具体算法和实现过程,给出了基于自适应聚类间距的快速聚类算法(AGDFC)的RBF网络训练算法和树型RBF网络构造算法。然后以实际的遥感土地覆盖分类为例,通过与最大似然分类算法(MLC)相比较,对分类过程和结果进行了综合分析,实验结果表明树型RBF网络方法在学习速度、网络结构、分类精度等方面具有一定的优势。

关 键 词:RBF神经网络  遥感图像  分类
文章编号:1002-6819(2004)05-0173-05
收稿时间:2004-02-06
修稿时间:2004-02-06

RBF neural tree networks for multi-class classification in remote sensing
Yuan Jin,Liu Xuemei and Jiang Tao. RBF neural tree networks for multi-class classification in remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(5): 173-177
Authors:Yuan Jin  Liu Xuemei  Jiang Tao
Abstract:In this paper, the algorithm and realizing procedures of the RBFNN used in classification of remote sensing image were discussed, and a training algorithm based on Adaptive Global Distance Fast Cluster (AGDFC) and a tree-like hierarchical RBFNN constructing algorithm were. Then, the case of practical application of remote sensing land cover classification in Tai'an region was presented. Through comparing with MLC, classification process and results were synthetically analyzed. Experimental results show that RBF neural tree networks approach has more advantages in training time, network structure, classification precision, etc.
Keywords:radial basis function neural networks  remote sensing image  classification
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号