摘 要: | 【目的】本研究以野外考察数据为基础,尝试构建基于模糊神经网络方法的干旱区土壤盐分预测模型,对表层土壤盐分进行预测模拟。【方法】首先,根据研究区实际情况选取7个土壤盐渍化影响因子并提取所需信息,利用灰色关联分析法得出土壤盐分与各影响因子之间的关系,然后利用土壤盐渍化的影响因子作为输入样本,土壤盐分作为输出因子,建立了基于T-S模糊神经网络的表层土壤盐分预测模型。【结果】预测结果表明,平均相对误差为13.092%,最小误差为0.875%,最大相对误差为41.733%,预测精度较高。【结论】T-S模糊神经网络模型的预测效果较好,可以用于预测土壤盐渍化状况,为干旱区土壤盐渍化变化规律提供了一种有效的方法。
|