首页 | 本学科首页   官方微博 | 高级检索  
     

彩色树木图像分割算法的研究
引用本文:白雪冰,郭景秋,陈凯,祝贺,张庭亮. 彩色树木图像分割算法的研究[J]. 云南林业科技, 2014, 0(6): 33-38
作者姓名:白雪冰  郭景秋  陈凯  祝贺  张庭亮
作者单位:东北林业大学机电工程学院,黑龙江哈尔滨150040
基金项目:黑龙江省自然科学基金项目(C201208),黑龙江省博士后基金项目(LBH-Q10160).
摘    要:树木图像分割是将树木与其周围景物分离的技术,是虚拟现实和计算机仿真等学科在林业应用的核心技术,也是机器视觉领域的重要研究方向,拓宽了计算机技术在林业中的应用。本项研究基于树木图像形状复杂的特点,设计并实现了一种结合C-V模型水平集及形态学处理的彩色树木图像分割算法。运用改进的最小化能量函数作为水平集的演化曲线,可以更加自然地改变曲线拓扑结构,对含有分裂、合并、形成尖角等复杂形状的目标对象分割更为有效。如果再结合形态学后处理算法,将初次分割图像中非目标区的细密纹理和噪声剔除,可以快速准确地得到全局最优的图像分割效果。同时进行了与基于梯度变换的改进分水岭树木图像分割和基于灰度-梯度最大熵的树木图像分割算法的对比试验,试验表明,结合C-V模型水平集和形态学算法对树木图像分割效果更为有效。

关 键 词:彩色图像分割  C-V模型  形态学处理  分水岭  最大熵

Research on Color Trees Image Segmentation
BAI Xue-bing,GUO Jing-qiu,CHEN Kai,ZHU He,ZHANG Ting-liang. Research on Color Trees Image Segmentation[J]. Yunnan Forestry Science and Technology, 2014, 0(6): 33-38
Authors:BAI Xue-bing  GUO Jing-qiu  CHEN Kai  ZHU He  ZHANG Ting-liang
Affiliation:(College of Electromechanical Engineering of Northeast Forestry University, Harbin Heilongiiang 150040, P. R. China)
Abstract:The trees image segmentation is a technology separating trees from its surrounding landscape, which is the core technology in virtual reality and computer simulation of forestry application and also is one of the focus are-as in machine vision to provide basic data and technical support for the application of computer technology in forest-ry.Base on characteristics of complex shapes of the trees image, this paper designed and implemented a color im-age segmentation based on a set level of C-V model and later morphological processing operation.The improved minimization of energy function was made as the level set evolution curve, because it could naturally change the e-volution curve, and also more effectively segment complex shapes with parts of fission, mergence and sharp corner. Then combined with the later morphological processing operation, which could clear the non-target parts such as texture and noise from the initial image segmentation, finally the global optimal image segmentation could be ob-tained fast and accurately.At the same time, we compared the color trees image segmentation, combined with a set with level of C-V model and the later morphological processing operation, with the improved watershed trees image segmentation based on gradient transform and the maximum entropy trees image segmentation based on gray gradi-ent.The results showed that the method combined a set level of C-V model and the later morphological processing operation was more effective.
Keywords:color image segmentation  C-V model  later morphological processing operation  watershed  the maximum entropy
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号