首页 | 本学科首页   官方微博 | 高级检索  
     

S3307对始花期和始粒期淹水绿豆光合作用及产量的影响
引用本文:于奇,冯乃杰,王诗雅,左官强,郑殿峰. S3307对始花期和始粒期淹水绿豆光合作用及产量的影响[J]. 作物学报, 2019, 45(7): 1080-1089. DOI: 10.3724/SP.J.1006.2019.84160
作者姓名:于奇  冯乃杰  王诗雅  左官强  郑殿峰
作者单位:黑龙江八一农垦大学农学院;黑龙江八一农垦大学国家杂粮工程技术研究中心
基金项目:This study was supported by the National Natural Science Foundation of China(31871576);the National Key Technology Support Program of China for the 12th Five-Year Plan(2014BAD07B05)
摘    要:淹水胁迫是作物生长发育过程中遭受的主要非生物胁迫之一,探究提高绿豆耐淹性的机制对绿豆抗涝栽培具有重要意义。本文在2017—2018年以耐淹性不同的绿豆品种绿丰2号和绿丰5号为试验材料,采用盆栽方式探究了烯效唑(S3307)对淹水胁迫下绿豆叶片生理、光合作用及产量的影响。结果表明,在不同生育时期淹水胁迫下,绿豆叶片的叶绿素含量(SPAD)及光合特性参数均显著下降,丙二醛(MDA)含量显著增加,始花期(R1期)淹水胁迫下绿豆的减产率为24.70%~33.63%,始粒期(R5期)减产率为18.07%~28.87%。2个绿豆品种均表现为R1期受淹水胁迫危害程度大于R5期,绿丰2号耐淹性强于绿丰5号。喷施S3307后显著提高淹水胁迫下绿豆叶片的SPAD、净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs),并显著降低了MDA含量。绿豆在R1期淹水胁迫下的缓解率为28.91%~52.34%,R5期缓解率为13.77%~27.36%。表明叶面喷施S3307可有效提高淹水胁迫下绿豆叶片的生理功能及光合能力,进而降低减产幅度,但不同淹水时期和绿豆品种对S3307的调控响应存在差异。

收稿时间:2018-11-26

Effects of S3307 on the photosynthesis and yield of mung bean at R1 and R5 stages under waterlogging stress
YU Qi,FENG Nai-Jie,WANG Shi-Ya,ZUO Guan-Qiang,ZHENG Dian-Feng. Effects of S3307 on the photosynthesis and yield of mung bean at R1 and R5 stages under waterlogging stress[J]. Acta Agronomica Sinica, 2019, 45(7): 1080-1089. DOI: 10.3724/SP.J.1006.2019.84160
Authors:YU Qi  FENG Nai-Jie  WANG Shi-Ya  ZUO Guan-Qiang  ZHENG Dian-Feng
Affiliation:1.College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China;2.National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
Abstract:Waterlogging stress is one of the main abiotic stresses during the growth and development of crops. It is of great significance to explore the mechanisms for improving the flood resistance and waterlogging resistance cultivation of mung bean under waterlogging stress. In this experiment, the effects of uniconazole (S3307) on physiology, photosynthesis and yield of mung bean leaves under waterlogging stress were investigated in pot culture with different flood resistance mung bean varieties Lufeng 2 and Lufeng 5 from 2017 to 2018. Under the stress of waterlogging at different growth stages, the chlorophyll content (SPAD) and photosynthetic characteristic parameters of mung beans leaves were significantly decreased, malondialdehyde (MDA) content was significantly increased. The yield reduction rate of mung beans under the stress of waterlogging was 24.70%-33.63% at the beginning bloom (R1 stage), and 18.07%-28.87% at the beginning seed (R5 stage). Both mung bean varieties showed that the effect of waterlogging stress at R1 stage was greater than that at R5 stage, and the flood resistance of Lufeng 2 was stronger than that of Lufeng 5. After S3307 sprayed, SPAD, net photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs) in the leaves of mung beans could be significantly increased and MDA content could be significantly decreased. The remission rate of mung beans under waterlogging stress was 28.91%-52.34% at R1 stage, and 13.77%-27.36% at R5 stage. The results showed that S3307 sprayed on the leaf surface could effectively alleviate the physiological function and photosynthetic capacity of mung bean leaves under the stress of waterlogging, thus reduce the yield reduction, but there were differences in the regulatory response of mung bean varieties to S3307 in different waterlogging periods.
Keywords:mung bean  uniconazole (S3307)  waterlogging stress  photosynthesis  yield  
本文献已被 CNKI 等数据库收录!
点击此处可从《作物学报》浏览原始摘要信息
点击此处可从《作物学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号