首页 | 本学科首页   官方微博 | 高级检索  
     检索      

高产高油花生品种的光合与物质生产特征
引用本文:陈四龙,程增书,宋亚辉,王瑾,刘义杰,张朋娟,李玉荣.高产高油花生品种的光合与物质生产特征[J].作物学报,2019,45(2):276-288.
作者姓名:陈四龙  程增书  宋亚辉  王瑾  刘义杰  张朋娟  李玉荣
作者单位:河北省农林科学院粮油作物研究所/河北省作物遗传育种实验室
基金项目:his study was supported the National Natural Science Foundation of China(31771843);his study was supported the National Natural Science Foundation of China(31201239);the Hebei Province Talent Training Project(2017-192);the China Agriculture Research System(CARS-13);the Hebei Modern Agricultural Science and Technology Innovation and Research Project(494-0402-YBN-XGHI);and the Hebei Province Science and Technology R&D Plan(16226301D)
摘    要:以冀花2号、冀花4号和鲁花12号为材料,连续测定干物质、荚果产量、含油量及叶片光合指标,定量分析高产高油花生品种冀花4号物质生产指标的动态特征和叶片光合性能,为解析花生高产高油形成机制和优质高效栽培提供依据。结果表明,荚果产量和籽仁含油量均以冀花4号最高。干物质平均积累速率和最大积累速率均以冀花4号冀花2号鲁花12号,且冀花4号干物质积累潜力适中;籽仁油分最大积累速率和平均积累速率均以冀花4号鲁花12号冀花2号,籽仁油分积累活跃期以冀花4号最短。冀花4号全生育期的光合势显著高于冀花2号和鲁花12号,分别高20%以上,产量形成期的光合势占全生育期的80%,冀花4号结荚期光合速率比冀花2号和鲁花12号均高24%以上;光饱和点和CO_2饱和点均为冀花4号最高。荚果产量与干物质平均积累速率、叶片光合速率和总光合势呈极显著正相关;籽仁含油量与单株干物质积累速率、籽仁油分平均积累速率、光饱和点、CO_2饱和点、经济系数、出仁率等显著或极显著相关;荚果产量与含油量极显著正相关。冀花4号具有较高的经济系数、总光合势及结荚期后分配比例、光合速率、光饱和点和CO_2饱和点,以及相对较高的干物质和油分积累平均速率,是其较冀花2号和鲁花12号高产高油的重要原因。

收稿时间:2018-04-03

Leaf photosynthesis and matter production dynamic characteristics of peanut varieties with high yield and high oil content
Si-Long CHEN,Zeng-Shu CHENG,Ya-Hui SONG,Jin WANG,Yi-Jie LIU,Peng-Juan ZHANG,Yu-Rong LI.Leaf photosynthesis and matter production dynamic characteristics of peanut varieties with high yield and high oil content[J].Acta Agronomica Sinica,2019,45(2):276-288.
Authors:Si-Long CHEN  Zeng-Shu CHENG  Ya-Hui SONG  Jin WANG  Yi-Jie LIU  Peng-Juan ZHANG  Yu-Rong LI
Institution:Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences / Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, Hebei, China
Abstract:The pod yield and seed oil content are important factors affecting oil yield in peanut varieties. Obviously, it is essential for high oil yield to explore the dry matter accumulate, yield, seed oil content and leaf photosynthesis characteristics. In order to clarify the formation mechanisms for high yield and high oil content in peanut varieties and to provide a theoretical base for peanut high quality and high yield cultivation techniques, a field experiment was conducted to evaluate three widely cultivated peanut varieties (Jihua 2 and Luhua 12, the high-yield and normal-oil; Jihua 4, the high-yield and high-oil). The dry matter accumulation, pod yield, seed oil content accumulation, and leaf photosynthetic characteristics were determined, showing that the pod yield and seed oil content of Jihua 4 were the highest among the three varieties used. The average rate of dry matter accumulation and the maximum rate of dry matter accumulation showed a trend of Jihua 4 > Jihua 2 > Luhua 12. The maximum weight of dry matter of Jihua 4 was moderate. The maximum seed oil accumulation rate and average seed oil accumulation rate showed a trend of Jihua 4 > Luhua 12 > Jihua 2, the active seed oil accumulation stage of Jihua 2 was the longest, while that of Jihua 4 was the shortest among the three varieties. The leaf photosynthesis potential of Jihua 4 in the entire growth period was above 20% higher than that of Jihua 2 and Luhua 12, respectively. The photosynthesis potential in pod-setting stage was very important to peanut yield, accounting for 80% over whole growing season. The leaf photosynthetic rate of Jihua 4 at pod-setting stage was more than 24% higher than that of Jihua 2 and Luhua 12. There was a significant difference in photosynthesis parameters among the three varieties. The light saturation point and CO2 saturation point of Jihua 4 were the highest. The pod yield was positively significantly correlated with average plant dry matter accumulation rate, leaf photosynthetic rate and total leaf area duration, respectively. The seed oil content was positively significantly correlated with average plant dry matter accumulation rate, average seed oil accumulation rate, light saturation point, CO2 saturation point. Furthermore, there existed a weak but significant correlation between pod yield and seed oil content. In conclusion, Jihua 4 has higher economic coefficient, photosynthesis potential after pod-setting stage, leaf photosynthetic rate, light saturation point and CO2 saturation point, average accumulation rate of dry matter and seed oil, which is the main reason for higher productivity potential in yield and oil in Jihua 4.
Keywords:peanut  dry matter accumulation  yield  oil accumulation  photosynthetic characteristics  
本文献已被 CNKI 等数据库收录!
点击此处可从《作物学报》浏览原始摘要信息
点击此处可从《作物学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号