Controlled atmosphere stunning of broiler chickens. II. Effects on behaviour, physiology and meat quality in a commercial processing plant |
| |
Authors: | McKeegan D E F Abeyesinghe S M McLeman M A Lowe J C Demmers T G M White R P Kranen R W van Bemmel H Lankhaar J A C Wathes C M |
| |
Affiliation: | Division of Animal Production and Public Health, Faculty of Veterinary Medicine, University of Glasgow, Glasgow, Scotland. |
| |
Abstract: | 1. The effects of controlled atmosphere stunning on behavioural and physiological responses, and carcase and meat quality of broiler chickens were studied experimentally in a full scale processing plant. 2. The gas mixtures tested were a single phase hypercapnic anoxic mixture of 60% Ar and 30% CO(2) in air with <2% O(2), and a biphasic hypercapnic hyperoxygenation mixture, comprising an anaesthetic phase, 40% CO(2), 30% O(2), 30% N(2), followed by an euthanasia phase, 80% CO(2), 5% O(2), 15% N(2). 3. Birds stunned with Ar + CO(2) were more often observed to flap their wings earlier, jump, paddle their legs, twitch and lie dorsally (rather than ventrally) than those stunned with CO(2) + O(2). These behaviours indicate a more agitated response with more severe convulsions during hypercapnic anoxia, thereby introducing greater potential for injury. 4. Heart rate during the first 100 s of gas stunning was similar for both gases, after which it remained constant at approximately 230 beats/min for CO(2) + O(2) birds whereas it declined gently for Ar + CO(2) birds. 5. In terms of carcase and meat quality, there appeared to be clear advantages to the processor in using CO(2) + O(2) rather than Ar + CO(2) to stun broiler chickens, for example, a much smaller number of fractured wings (1.6 vs. 6.8%) with fewer haemorrhages of the fillet. 6. This study supports the conclusions of both laboratory and pilot scale experiments that controlled atmosphere stunning of broiler chickens based upon a biphasic hypercapnic hyperoxygenation approach has advantages, in terms of welfare and carcase and meat quality, over a single phase hypercapnic anoxic approach employing 60% Ar and 30% CO(2) in air with <2% O(2). |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|