首页 | 本学科首页   官方微博 | 高级检索  
     


Linking models of polymerization and dynamics to predict branched polymer structure and flow
Authors:Read Daniel J  Auhl Dietmar  Das Chinmay  den Doelder Jaap  Kapnistos Michael  Vittorias Iakovos  McLeish Tom C B
Affiliation:Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK.
Abstract:We present a predictive scheme connecting the topological structure of highly branched entangled polymers, with industrial-level complexity, to the emergent viscoelasticity of the polymer melt. The scheme is able to calculate the linear and nonlinear viscoelasticity of a stochastically branched "high-pressure free radical" polymer melt as a function of the chemical kinetics of its formation. The method combines numerical simulation of polymerization with the tube/entanglement physics of polymer dynamics extended to fully nonlinear response. We compare calculations for a series of low-density polyethylenes with experiments on structural and viscoelastic properties. The method provides a window onto the molecular processes responsible for the optimized rheology of these melts, connecting fundamental science to process in complex flow, and opens up the in silico design of new materials.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号