首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Physical structures in soybean oil and their impact on lipid oxidation
Authors:Chen Bingcan  Han Ashley  McClements David Julian  Decker Eric Andrew
Institution:Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States.
Abstract:The oxidation of edible oil yields both primary and secondary oxidation products (e.g., hydroperoxides, carbonyls, hydrocarbons, and epoxides), which produce undesirable sensory and biological effects. Consequently, the suppression of lipid oxidation in food matrices is of great importance. The rate and extent of lipid oxidation in many heterogeneous foods are strongly affected by the physicochemical characteristics of water-oil interfaces. This study examined the ability of dioleoylphosphatidylcholine (DOPC) and water to form association colloids within bulk oil, as well as their impact on lipid oxidation kinetics. Attenuation was used to show the DOPC and water concentrations at which association colloids existed without altering the optical properties of the oil. Interfacial tension and fluorescence spectrometry showed the critical micelle concentration (CMC) of DOPC in stripped soybean oil was around 650 μM at room temperature. Small-angle X-ray scattering (SAXS) and fluorescence probes showed that water had a very strong impact on the properties of the association colloids formed by DOPC. Measurement of primary and secondary lipid oxidation products revealed that the association colloids formed by DOPC had a pro-oxidant effect. The characterization of association colloids could provide a better understanding of the mechanisms of lipid oxidation in bulk oils and provide insights into new antioxidant technologies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号