首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Suppression of wheat take-all and ophiobolus patch by fluorescent pseudomonads from a fusarium-suppressive soil
Authors:PTW Wong  R Baker
Institution:Department of Botany and Plant Pathology, Colorado State University, Fort Collins, CO 80523, U.S.A.
Abstract:Fluorescent pseudomonads isolated from a soil suppressing Fusarium wilt significantly reduced take-all (Gaeumannomyces graminis var. tritici) in wheat and Ophiobolus patch (G. graminis var. avenae) in Agrostis turfgrass. The bacteria were mixed into a conducive soil at a concentration of 107 colony-forming units (cfu)g?1 soil at sowing. There were significantly fewer (P ? 0.05) diseased wheat roots in the treatments with the bacteria and pathogen than in those with the pathogen alone. Dry weights of the tops of wheat and Agrostis turfgrass were significantly greater (P ? 0.01) in treatments inoculated with the bacteria in the presence of the pathogens compared to controls with the pathogens alone. Dry weights of the tops of plants from treatments inoculated with the bacteria alone were not significantly different to those of healthy wheat non-inoculated with the bacteria, showing that the fluorescent pseudomonads did not stimulate plant growth. At the end of the experiments, the bacterial isolates (genetically-marked with rifampicin resistance) were recovered from wheat roots and rhizosphere soil at concentrations of 105–107cfu g?1 fresh weight of roots or oven-dried rhizosphere soil.Many of the fluorescent pseudomonads and some non-fluorescent pseudomonads showed in vitro antibiosis on quarter-strength potato dextrose agar (QPDA) against the pathogens. However, there was no correlation between in vitro antibiosis on agar plates and suppression of disease in pot experiments. Further, while some isolates of G. graminis var. tritici and var. avenae were inhibited by certain bacterial isolates, other isolates of the same fungus were not similarly inhibited by the same isolates of bacteria. Most of the fluorescent pseudomonads that produced inhibition zones (>5mm) against G. graminis var. tritici on QPDA did not do so on King's medium B, where fluorescent siderophores were formed. In vitro antibiosis is, therefore, a poor criterion for selecting effective bacterial antagonists of the wheat take-all fungus. All of the fluorescent pseudomonads tested produced siderophores in low-Fe media while a non-fluorescent pseudomonad and the fungal pathogens did not produce siderophores of comparable activity. The addition of 500 μg FeEDTA g?1 with a lower stability constant did not. The evidence suggests that iron competition at the rhizoplane or in the rhizosphere is one mechanism of suppression.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号