首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrolysis of organic phosphorus in soil water suspensions after addition of phosphatase enzymes
Authors:K. E. Annaheim  C. B. Rufener  E. Frossard  E. K. Bünemann
Affiliation:1. Institute of Agricultural Sciences, Swiss Federal Institute of Technology Zurich (ETH), Eschikon 33, Lindau, 8315, Switzerland
Abstract:Additions of enzymes involved in organic phosphorus (P) hydrolysis can be used to characterize the hydrolyzability of molybdate-unreactive P (MUP) in soil water extracts. Our aim was to test the feasibility of enzyme additions to soil water suspensions with respect to (1) suitable enzyme preparations and (2) recovery of molybdate-reactive P (MRP). To this end, we compared the substrate specificity of seven commercially available enzyme preparations (acid and alkaline phosphomonoesterase, phytase, and nuclease preparations) and optimized the assay conditions in microplates. We then measured MRP release after the addition of the enzymes to soil water suspensions and filtrates of two Swiss grassland soils (midland and alpine). In some cases, commercial preparations of the same enzyme differed in their specificity, presumably due to contamination with other enzymes, and also in their efficiency in soil suspensions. Addition of EDTA to the buffer was required to decrease sorption of released P in soil suspensions. Enzymatic release of P was consistently equal or higher in soil suspensions than in soil filtrates. However, also more dissolved MUP was present in soil suspensions than in filtrates, since the buffer interacted with the solid phase. Of the total dissolved MUP in soil suspensions, 94 and 61 % were hydrolyzable in midland and alpine soil, respectively. More specifically, 60 and 17 % of MUP were in nucleic acids, 6 and 39 % in simple monoesters, and 28 and 5 % in inositol hexakisphosphate in midland and alpine soil, respectively. Thus, we show that the characterization of hydrolyzable organic P in soil suspensions with hydrolytic enzyme preparations may be useful to better understand the availability of soil organic P to enzymatic hydrolysis, but that it requires soil-specific adaptation for optimum P recovery.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号