首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Comparative Analysis of Stratified Physical Characteristics of Seasonal Snow Cover With or Without Shading北大核心CSCD
作者单位:1.School of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi830052;2.Shaanxi Geographic Information Bureau of Surveying and Mapping, Xi’an710054;
摘    要:【Objective】Snow melting runoff is an important recharge component of arid inland rivers. Seasonal snow cover is very sensitive to environmental change. Therefore, it is of great significance to study and control the key factors affecting seasonal snow accumulation and snow melting process for basin safety and sustainable utilization of water resources under changing environment. 【Method】By observing the physical characteristics of seasonal snow layers under the conditions of sheltered or not (under canopy and open land) in the Urumqi River Basin experimental area on the northern slope of Tianshan Mountains in Xinjiang from November 2017 to February 2018, the differences of physical characteristics of seasonal snow layers were analyzed. 【Result】① the temperature of open land was slightly higher than that of under canopy, and the relative humidity under canopy was higher than that of open land. ②The average depth of snow under canopy was less than that of open land, and the proportion of deep frost layer to coarse snow layer was larger in stratified snow cover. ③The vertical profile of snow density under canopy was basically the same as that under open land. The snow density increased gradually from the new snow layer down to the peak of coarse snow layer (open land) and medium-sized snow layer (under canopy). ④ Snow temperature and liquid water content of layers under canopy and open land increased from new snow layer to deep frost layer. ⑤ The variation trend of snow water equivalence under canopy and open ground was basically the same during observation period. The value of snow water equivalence under open ground was obviously larger than that under canopy. 【Conclusion】Snow surface temperature is a significant factor affecting the liquid water content of snow under canopy and open land. © 2019 Office of Journal of Irrigation and Drainage, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences. All rights reserved.

本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号