首页 | 本学科首页   官方微博 | 高级检索  
     

基于杂交种群体的玉米产量及其配合力的全基因组关联分析
引用本文:李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. DOI: 10.3864/j.issn.0578-1752.2022.09.001
作者姓名:李周帅  董远  李婷  冯志前  段迎新  杨明羡  徐淑兔  张兴华  薛吉全
作者单位:西北农林科技大学农学院/西北旱区玉米生物与遗传改良重点实验室,陕西杨凌 712100
基金项目:国家现代农业产业技术体系建设专项(CARS-02-77);
摘    要:【目的】通过分析陕A群和陕B群选育自交系组配的杂交种产量,评估自交系的配合力,并开展以产量和配合力为目标性状的全基因组关联分析,挖掘产量及其配合力的关联位点,为陕A群和陕B群选育玉米自交系的改良及育种中的应用提供依据。【方法】基于NCⅡ遗传设计,以陕A群和陕B群选育的85份优良玉米自交系为亲本,构建包含246份F1的杂交种群体,在3个环境下进行产量测试,并评估产量的一般配合力和特殊配合力;利用6H90K芯片进行亲本基因型检测,获得63 879个高质量SNP标记,并进行群体遗传特征分析,在杂交种群体推测出高质量SNP标记55 951个,采用加性模型和非加性模型对杂交种产量、一般配合力和特殊配合力开展了全基因组关联分析,并基于B73参考基因组对显著关联SNPs内的基因进行挖掘和功能注释。【结果】3个环境下的产量表现符合正态分布且变异广泛,产量广义遗传力为59.04%,环境效应显著;杂交种产量、一般配合力和特殊配合力三者之间均达到极显著相关性,杂交种产量与特殊配合力的相关性(r=0.95)大于与一般配合力的相关性(r=0.62);陕A群与陕B群遗传特征具有一定差异,陕A群具有较高的一般配合力。全基因组关联分析分别检测到7、5和9个SNP与杂交种产量、一般配合力和特殊配合力显著相关(-log10(P)>3.86),其中4个SNP为杂交种产量和特殊配合力共定位,最终锚定了17个关联SNP。对不同性状关联位点的优势等位基因型分析发现,4个GCA关联SNP受加性效应控制,F1产量BLUE关联位点可分为4种表现形式,以显性效应为主,其杂合基因型为最优等位基因型或次优等位基因型。通过功能注释发现,候选基因在玉米生长发育和籽粒建成中特异表达,例如GRMZM2G165828GRMZM2G057557均与玉米籽粒发育相关。【结论】一般配合力和特殊配合力共同影响杂交种的产量,特殊配合力效应影响更大;一般配合力和特殊配合力具有不同的遗传基础,可通过有利等位基因聚集提高一般配合力。在F1杂交种群体采用全基因组关联分析策略可开展配合力相关遗传解析,挖掘产量及其配合力相关遗传位点,可加速关联位点在分子育种中的应用。

关 键 词:玉米  杂交种  一般配合力  特殊配合力  全基因组关联分析  
收稿时间:2021-12-10

Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population
LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population[J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709. DOI: 10.3864/j.issn.0578-1752.2022.09.001
Authors:LI ZhouShuai  DONG Yuan  LI Ting  FENG ZhiQian  DUAN YingXin  YANG MingXian  XU ShuTu  ZHANG XingHua  XUE JiQuan
Affiliation:College of Agronomy, Northwest A&F University/Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Yangling 712100, Shaanxi
Abstract:【Objective】By analyzing the yield of the hybrids from the inbred lines bred from the Shaan A and Shaan B group, the combining ability of the inbred lines were evaluated, genome-wide association analysis, and mining associated loci for yield and its combining ability conducted. It will provide references for improving maize inbred lines selected from Shaan A group and Shaan B group and applying them in varieties breeding. 【Method】Based on NCⅡ genetic design, 85 excellent inbred lines from Shaan A group and Shaan B group were used to construct a hybrid population containing 246 F1. Then, the yield of the hybrid population was tested in three environments to evaluate their general combining ability (GCA) and special combining ability (SCA). Using the 6H90K maize array to detect the parental genotypes, 63 879 high-quality SNPs were obtained, which were used to analyze the genetic characteristics of parental lines. According to the parental genotypes, 55 951 high-quality SNPs were inferred in the hybrid population for genome-wide association analysis of hybrid yield, GCA, and SCA using additive model and non-additive model. Meanwhile, candidate genes around the significant SNPs were screened and annotated based on the maize B73 reference genome.【Result】The yield in the three environments accorded to the normal distribution with wide variation, the broad-sense heritability of yield was 59.04%, and the environmental effect was significant. There was significant positive correlation between hybrid yield and combining ability, and the correlation between hybrid yield and SCA (r=0.95) was higher than that between hybrid yield and GCA (r=0.62). The genetic characteristic of Shaan A group and Shaan B group was different, and inbred lines from Shaan A group have higher general combining ability. Totally, five, seven and nine significant SNPs were detected (-log10(P)>3.86) for GCA, hybrid yield and SCA, respectively. Among them, four SNPs were co-located in hybrid yield and SCA. Ultimately, 17 associated SNPs were anchored. Dominant allele analysis of different trait-associated loci showed that four GCA-associated SNPs were controlled by additive effects, and the F1 BLUE-associated loci could be divided into 4 types mainly by the dominant effect, and the heterozygous genotype is the favorite allele or sub-optimal allele for yield in F1. Through functional annotation, the candidate genes were specifically expressed in maize growth and kernel establishment, for example, GRMZM2G165828 and GRMZM2G057557 were related to maize kernel development. 【Conclusion】Based on this study, we consider that GCA and SCA jointly affect the yield of hybrids, and the effect of SCA is greater. Moreover, GCA and SCA may have different genetic basis, and GCA can be increased with the accumulation of favorable alleles. Using the genome-wide association analysis in the F1 hybrid population can carry out genetic analysis related to combining ability, mine the genetic loci related to yield and combining ability, and accelerated the application of the associated loci in molecular breeding.
Keywords:maize  hybrids  general combining ability  special combining ability  genome-wide association analysis  
点击此处可从《中国农业科学》浏览原始摘要信息
点击此处可从《中国农业科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号