首页 | 本学科首页   官方微博 | 高级检索  
     


EDC/NHS crosslinked electrospun regenerated tussah silk fibroin nanofiber mats
Authors:Rong Liu  Jinfa Ming  Huanxiang Zhang  Baoqi Zuo
Affiliation:1. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China
2. College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
3. School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
Abstract:The tussah silk fibroin (TSF) nanofibers with 611 nm diameters were prepared by electrospinning with the solvent hexafluoroisopropanol (HFIP). And then, the TSF nanofibers were crosslinked by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide/N-Hydroxysuccinimide (EDC/NHS) crosslinking agent. The morphology and microstructure of the crosslinked TSF nanofibers were characterized by scanning electron microscopy (SEM), Fourier transforms infrared analysis (FTIR), X-ray diffraction, Instron electronic strength tester, and cell culture. After treatment with EDC/NHS crosslinking agent, the TSF nanofibers swelled and its average diameter increased from 611 to 841 nm. FTIR and X-ray diffraction results demonstrated that random coil, ??-helix, and ??-sheet co-existed in the TSF nanofiber mats, but the content of ??-sheet increased from 25.26 to 45.34 %, and the random coil content decreased from 32.47 to 24.94 %. Compared with the electrospun pure TSF nanofiber mats, the crosslinked TSF nanofiber mats exhibited a lower breaking tenacity and initial modulus, which were 5.51 MPa and 9.86 MPa, respectively. At the same time, the extension at break of the crosslinked TSF nanofiber achieved 109.38 %. In cell culture evaluation, the crosslinked TSF nanofibers were found to support cell adhesion and spreading fibroblast L373 and bone marrow mesenchymal stem cells (BMSCs), which had potential utility in a range of tissue engineering.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号