Adsorption of pure and dirty bacterial DNA on clay minerals and their transformation frequency |
| |
Authors: | Giacomo Pietramellara Judith Ascher Maria Teresa Ceccherini Paolo Nannipieri Dirk Wenderoth |
| |
Affiliation: | (1) Department of Soil Science and Plant Nutrition, University of Florence, P. le delle Cascine 28, 50144 Florence, Italy;(2) Gesellschaft für Biotechnologische Forschung (GBF), Mascheroder Weg 1, 38124 Braunschweig, Germany |
| |
Abstract: | Several studies have investigated the adsorption of pure DNA on soil particles and its transformation ability. However, the presence of not purified (dirty) rather than pure DNA is more common in the extracellular soil environment. For this reason, we have investigated the adsorption and binding of dirty DNA on montmorillonite (M) and kaolinite (K) and their transforming ability in comparison to pure DNA. After lysis of Bacillus subtilis cells, induced by KCl, dirty DNA was characterized by the presence of cellular wall debris (cwd) and other constitutional organic components (coc). The dirty DNA was then divided into two fractions, one with cellular wall debris (DNA +cwd) and the other without cellular wall debris (DNA −cwd). B. subtilis BD 1512 (Cmr) and BD 170 (Cms) were selected as donor and recipient bacteria, respectively, for adsorption and transformation studies. Both cwd and coc seem to facilitate the adsorption of DNA to clay minerals, whereas only cwd promote the DNA binding on clays, protecting also the DNA fragments below 400 bp against nucleases. Both dirty DNA fractions adsorbed and bound on clay minerals were able to transform competent cells. |
| |
Keywords: | DNA– clay complexes Dirty and pure DNA Natural transformation |
本文献已被 SpringerLink 等数据库收录! |
|