首页 | 本学科首页   官方微博 | 高级检索  
     

基于决策树和混合像元分解的江苏省冬小麦种植面积提取
作者姓名:王连喜  徐胜男  李琪  薛红喜  吴建生
作者单位:1. 江苏省农业气象重点实验室,南京 210044; 南京信息工程大学应用气象学院,南京 210044;2. 中国气象局国家气象中心,北京,100081
基金项目:国家科技支撑计划(2012BAH29B03)
摘    要:归一化植被指数(normalized difference vegetation index,NDVI)时间序列曲线能提供作物生长动态变化信息,将其应用于农作物种植面积提取具有一定优势。该文以江苏省为研究区域,采用2013年1月1日-2014年12月19日46景250 m空间分辨率的MODIS-NDVI时间序列数据、2014年4月23日的MOD09A1反射率影像及Landsat数据,开展冬小麦种植面积的遥感识别,首先利用MODIS数据建立作物的归一化植被指数时间序列曲线,再采用Savitzky-Golay滤波方法对NDVI时间序列数据进行重构,并基于农作物物候历、种植结构和种植模式等信息,提取研究区域典型地物物候生长期的关键值,在分析冬小麦、林地、水稻物候期(生长期开始时间、生长期结束时间、生长期幅度、生长期长度及生长期的NDVI最大值)变化趋势的基础上,综合比较分析不同地物平滑重构后的NDVI时间序列曲线特征,界定作物种类,确定训练规则,利用快速、高效的决策树方法,通过多阈值限定进行分类,初步提取冬小麦的空间分布范围;但是由于存在混合像元,阈值范围的设定会影响冬小麦种植面积的提取精度,针对此类问题,运用地表反射率影像数据提取冬小麦端元波谱曲线,结合线性光谱混合模型进行混合像元分解,进而根据冬小麦丰度比例精确提取冬小麦种植面积;最后利用统计数据和空间分辨率较高的Landsat TM 8影像数据对提取结果进行县域级验证。精度评价结果表明,研究区域的冬小麦种植面积提取精度达到90%,能够较准确地反映研究区域冬小麦的分布情况,表明运用中高分辨率遥感时间序列影像数据可以准确提取作物种植面积,为农作物种植面积信息提取提供参考。

关 键 词:决策树  滤波  分类  归一化植被指数NDVI  混合像元  分解  冬小麦
收稿时间:2015-08-10
修稿时间:2016-01-13
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号