Source Treatment of Acid Mine Drainage at a Backfilled Coal Mine Using Remote Sensing and Biogeochemistry |
| |
Authors: | Song Jin Paul H. Fallgren Jeffrey M. Morris Jeffrey S. Cooper |
| |
Affiliation: | 1. Western Research Institute, 365 North 9th St., Laramie, WY, 82072, USA
|
| |
Abstract: | A biological source treatment (BST) technique using remote sensing and biogeochemistry has been developed to address acid mine drainage (AMD) at its source. The BST technique utilizes down-hole injections of microbial inoculum and substrate amendments to establish a biofilm on the surface of metal sulfides (AMD source material). The treatment results in an elevated groundwater pH (from acidic to circum-neutral levels) and prevents further oxidation of AMD source material. The first 2 years of an ongoing field study of the BST technique at a reclaimed coal mine in central Tennessee (USA) has produced successful results. For instance, the water chemistry in a monitoring well down-gradient from injection wells has improved substantially as follows: the pH increased 1.3 units from 5.7 to 7.3, the dissolved (0.45 µm-filtered) iron concentration decreased by 84% from 93 to 15 mg/l, the conductivity decreased by 379 µS/cm, and sulfate decreased by 78 mg/l. Electromagnetic induction surveys were conducted to identify AMD source material and monitor BST performance by measuring changes in subsurface resistivity throughout the site. These surveys revealed a treatment zone created between injection wells where the resistance of contaminated groundwater from up-gradient AMD sources increased as it flowed past injection wells, thus, suggesting this technique could be used to treat AMD sources directly or to intercept and neutralize sub-surface AMD. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|