首页 | 本学科首页   官方微博 | 高级检索  
     


Quantifying moisture and roughness with Support Vector Machines improves spectroscopic soil organic carbon prediction
Authors:Christoph Römer  Andrei Rodionov  Jan Behmann  Stefan Pätzold  Gerhard Welp  Lutz Plümer
Affiliation:1. University of Bonn, Institute of Geodesy and Geoinformation (IGG), Geoinformation, Meckenheimer Allee 271, 53113 Bonn, Germany;2. University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, Nussallee 13, 53115 Bonn, Germany
Abstract:The challenges of Vis‐NIR spectroscopy are permanent soil surface variations of moisture and roughness. Both disturbance factors reduce the prediction accuracy of soil organic carbon (SOC) significantly. For improved SOC prediction, both disturbance effects have to be determined from Vis‐NIR spectra, which is especially challenging for roughness. Thus, an approach for roughness quantification under varying moisture and its impact on SOC assessment using Support Vector Machines is presented here.
Keywords:ordinal classification  moisture  roughness  soil organic carbon (SOC)  Vis‐NIR spectroscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号