首页 | 本学科首页   官方微博 | 高级检索  
     


Mixed chelators of EDTA,GLDA, and citric acid as washing agent effectively remove Cd,Zn, Pb,and Cu from soils
Authors:Xiaofang Guo  Guixiang Zhang  Zebin Wei  Liping Zhang  Qiusheng He  Qitang Wu  Tianwei Qian
Affiliation:1.School of Environment and Safety,Taiyuan University of Science and Technology,Taiyuan,China;2.College of Natural Resources and Environment, Key Laboratory of Ecological Agriculture of Ministry of Agriculture of China,South China Agricultural University,Guangzhou,China
Abstract:

Purpose

Soil washing with chelators is a viable treatment alternative for remediating multi-contaminated soils. The aim of this study was to investigate the removal efficiencies of Cd, Zn, Pb, and Cu in alkaline and acid multi-metal-contaminated soils by washing with the mixed chelators (MC).

Materials and methods

The batch experiments were carried out to evaluate the removal efficiencies of heavy metals in contaminated soils by the MC with different molar ratios of EDTA, GLDA, and citric acid, and evaluated the washing factors, including contact time, pH, MC concentration, and single and multiple washings at the same MC dose, on the removal efficiencies.

Results and discussion

Results showed that the removal efficiencies for Cd, Zn, Pb, and Cu by the MC (the molar ratio of EDTA, GLDA, and citric acid was 1:1:3) were as much as those of the only EDTA washing from both soil at the same application dose of total chelators; moreover, the application dose of EDTA decreased by 80%. For the alkaline-contaminated soil, the removal efficiencies of Cd, Zn, Pb, and Cu decreased with the increasing of the solution pH, which was opposite to acid-contaminated soil. This was attributed to that the metal-ligand complex could be obviously re-adsorbed on the soil surface sites, particularly in low pH values. The removal efficiencies of Cd, Zn, Pb, and Cu depended on MC concentration. A higher MC concentration led to a more effective removal of Cd, Zn, Pb, and Cu in alkaline-contaminated soil; however, their changes were slightly increased in acid-contaminated soil. At the same dose of MC, single washing with higher MC concentration might be favorable to remove heavy metals, moreover, with much less wastewater generation.

Conclusions

The MC (the molar ratio of EDTA, GLDA, and citric acid was 1:1:3) may be a useful, environmentally friendly, and cost-effective chelators to remediate heavily multi-metal-contaminated soil.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号